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Abstract. This paper provides a methodological framework to analyze the decisions of

airlines and travelers taking into account the contractual agreement between airports and

airlines. This contract sets the fees that carriers pay for landing, the rental rate for the

terminal space that they occupy, as well as the methodology to determine these charges.

Using data from San Francisco International Airport (SFO) and Metropolitan Oakland

International Airport (OAK), we quantify the effects of changes in the agreement on the

behavior of airlines and congestion at airports. In particular, we look at modifications in the

design of charges and variations in the operating costs at airports. Counterfactuals suggest

that different methodologies to compute charges and changes in airport costs may induce

airlines to behave differently, affecting delays at airports.

Our structural model captures important characteristics of the airline industry: endo-

geneity of airport charges with respect to decisions of travelers and carriers, correlation

across markets, and two decision variables of airlines (fares and frequency of flights).

1. Introduction

Interactions between airlines, travelers and airports in the U.S. have been the object of

several studies since airline deregulation at the end of the 70’s. The rise of air traffic and

limited capacity of airports have led researchers to study the efficiency of carrier operations

at airports. However, most of the empirical work does not take into account the relationship

between airports and airlines. This contractual relationship sets the fees that airlines pay

for landing and the rental rate for the terminal space that they occupy. In this paper,
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we analyze how these charges are determined and how they affect the strategic behavior

of carriers and the level of congestion at airports. Our empirical application is based on

the competition between the two main airports located in the San Francisco Bay Area:

San Francisco International Airport (SFO) and Metropolitan Oakland International Airport

(OAK).

In the U.S., landing fees and rental of terminals are designed to let airports achieve

financial self-sufficiency. The methodology to determine these charges is airport specific and

follows guidelines proposed by the Department of Transportation (DoT). Charges are the

result of well defined pricing schemes that depend on measurable variables (for instance,

parking revenues, maintenance costs, retail-shop revenues, weight of aircraft, and number

of landings). If one of the components of the schemes changes, the airport operator may

be obliged to modify the charges even if such a modification is unpopular among airlines

and the press. For instance, Los Angeles International Airport (LAX) recently increased its

landing fees for the 2014 fiscal year from $4.46 to $4.60 per 1,000 pounds of the maximum

gross landing weight (MGLW) of passenger aircraft. This rise was motivated by an increase

in the cost of operating the airport. Charges can also change due to shocks in the demand for

airport services. For example, retail-shop revenues clearly depend on the number of travelers,

and the number of flights reaching airports is another variable affecting airport fees. Using

data from OAK and SFO, we characterize the equilibrium behavior of travelers and airlines,

and quantify the response of carriers and congestion at airports when airport costs affecting

the pricing schemes change. Since OAK and SFO apply different methodologies, the behavior

of carriers is also expected to be different at these airports.

Charges may be designed to be low in order to attract carrier operations, but at the

same time they can also cause congestion. This seems to be the case at SFO, since it uses

revenues generated at the parking lots to reduce the amount that airlines pay for the use of

its infrastructure. OAK, on the other hand, does not take these revenues into account when

it computes landing fees and rental charges. While the SFO methodology is appropriate

in periods of airport overcapacity, this is not the case when the airport operates at the

maximum of its possibilities, as SFO will do in the near future. Without investments in

new infrastructure (e.g. new terminals, runways, or air-traffic control technology upgrades),

SFO needs to consider alternatives to manage congestion. One solution is to revise the

methodology used to determine its charges. To explore the effects of such a change, the last

part of the paper analyzes the consequences of SFO adopting the contract scheme used by

OAK.
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In order to characterize the interaction between travelers, carriers and airports, we use a

structural model where demand and supply functions are specified. The demand is formed by

heterogeneous travelers with different locations (origin or destination) in the San Francisco

Bay and different tastes. The airline profit function depends on the pricing scheme (landing

fees and rental rates) charged by airports, with carriers deciding on fares and the frequency of

flights. At the same time, charges are endogenously determined by the behavior of travelers

and airlines. We use recent advances in estimation of two stage games (Villas-Boas (2007)

and Fan (2012)) to estimate the model.

There are few papers addressing empirically the role of airport charges. Van Dender

(2007), Bilotkach et al. (2012a), and Bel and Fageda (2009) analyze how market factors affect

the level of these charges. However, they do not explicitly model the relationship between

airlines and airports. In contrast, Ivaldi et al. (2011) present a structural model introducing

landing fees and travelers’ charges. They treat airports as platforms and show the existence

of two-sidedness effects. While they consider airports as profit maximizing monopolists, we

model the determination of fees and rates using rules based on cost recovery, which is more

consistent with the methodology applied by the two main airports in the San Francisco Bay.

Moreover, none of the aforementioned works considers the fact that charges are endogenously

determined by the behavior of travelers and carriers, and neither considers the role of charges

as a tool to manage flight delays.

Some other contributions are also made from a methodological point of view. First,

carriers behave as profit maximizing firms with respect to ticket prices and frequency of

flights reaching the Bay Area. Most of the previous literature only focuses on prices. Second,

our model captures two sources of correlation across markets: one comes from the possibility

that travelers purchasing different products use the same aircraft to reach the San Francisco

Bay. The model also captures the fact that planes contribute to congestion at airports,

affecting other aircraft even if they operate in different markets.

For our application, we use U.S. domestic flight data from the third quarter of 2006.

The Airline Origin and Destination Survey (DB1B), the T-100, and the Airline On-Time

Performance data sets from the U.S. Bureau of Transportation Statistics let us include the

supply side, analyze elasticities, and perform counterfactuals. In particular, these data sets

give us detailed information about product characteristics and the choices of travelers. We

will combine them with travelers’ demographic information using the American Commu-

nity Survey (ACS), financial airport information from the Federal Aviation Administration

(FAA), and technical aircraft characteristics. Finally, in order to increase the precision of
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the estimates, we will add additional information obtained from the 2006 Airline Passen-

ger Survey done by the Metropolitan Transportation Commission of the San Francisco Bay

(MTC).

Consistent with previous literature, travelers, on average, prefer to use SFO rather than

OAK. However, traveler heterogeneity is also an important factor to explain their purchasing

pattern. For instance, their decision significantly depends on the distance from their location

(origin or final trip destination in the Bay Area) to the airports.

If we look at the relationship between carriers and airports, we observe that changes

in the cost of operating airports not only affect landing fees and rental charges, but also

carrier decisions regarding the number of flights and size of aircraft, and congestion at the

airports. For example, a rise in landing fees as a result of an increment to the operating

costs of an airport is accompanied by a decrease in the daily frequency of flights, an increase

in the average size of aircraft, and a reduction of airport congestion. These results hold for

OAK and SFO, but they are much stronger at SFO. For instance, if the operating cost used

to compute charges at SFO increases by 20%, the total number of daily flights reaching the

airport decreases by 2.4%, the average weight of aircraft increases by 1.7%, and the average

delay of flights at SFO decreases by 8.1%. Similarly, an increase in the cost of operating

OAK by 20% reduces the number of daily flights by 0.7%, increases the average weight of

aircraft by 1.6%, and reduces congestion at OAK by 2.1%. Our simulations also suggest that

changes in the operating cost of one airport, barely change the behavior of carriers operating

at the competing airport.

Finally, the design of charges may play an important role in the behavior of carriers and

congestion at airports. When we analyze the effects of SFO adopting the contract used by

OAK, we find a threshold that helps us to identify under which conditions the new contract

is useful to reduce flight delays. As we will see in detail later on, each airport uses different

cost components to determine charges. The results of SFO implementing the OAK charge

scheme depend on the magnitude of the costs used in the new methodology relative to the

costs currently used at SFO. For example, if the sum of the cost components in the new

pricing scheme is 20% lower than the original one, the number of flights reaching SFO would

decrease by almost 4%. Consequently, the level of congestion at SFO would be 12% lower.

The rest of the paper is structured as follows. Section 2 introduces general features

of the San Francisco Bay and the airports operating in the area. Section 3 presents the

model. Section 4 outlines the optimality conditions of carriers. Section 5 describes the

application and data. Section 6 outlines the estimation methodology. Section 7 presents
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the estimation results. Section 8 analyzes the contractual relationship between airports and

airlines. Finally, section 9 concludes.

2. The Nature of the Interaction between Airlines and Airports

To analyze the equilibrium behavior of airlines (fares and flight frequency) and traveler

demand, it is necessary to understand the characteristics of each of the airports serving the

San Francisco Bay Area, and the nature of the relationship between airports and carriers.

The Bay Area is a region located in Northern California that is home to 7.15 million

people distributed around nine counties (Figure 1). It is served by 3 main airports: San

Francisco International (SFO) located in San Mateo County, Metropolitan Oakland Interna-

tional (OAK) in Alameda County, and Mineta San Jose International (SJC) in Santa Clara

County. OAK and SFO are located 11 miles apart, while SJC is around 30 miles from SFO

and OAK. SFO is the busiest of the three airports and an important entrance to the U.S.

from the Pacific.

We focus our attention on SFO and OAK. SJC will be included in the outside option

of the model. Such a decision is driven by the lack of passenger data for SJC. The impact

of this limitation in our analysis is expected to be low since, as several authors pointed out

(Bilotkach et al. (2012b), Brueckner et al. (2013)), OAK and SFO are closer substitutes

compared to SJC.

Most U.S. airports are operated as independent not-for-profit facilities overseen by a

local governmental entity such as a county, city, or state government. OAK and SFO are not

exceptions. The Port of Oakland owns and operates OAK and SFO is owned by the City

and County of San Francisco.

Airlines operate at airports under a contract called “use and lease agreement”, which

details the fees and rental rates that an airline has to pay, and the method by which they are

calculated. The charges that we consider are those related to landing operations (landing

fees) and the rates that carriers must pay for using the terminals (rental rates). The mag-

nitude of the two key elements of the contract are not negligible. If we look at the financial

statements of the airports, in 2006 SFO reported $74 million in landing fee revenues and

$145 million in revenues from rental of terminals. Similarly, OAK reported $17 million and

$27 million respectively.
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Both airports use a hybrid approach to determine charges.1 Under such a methodology,

operating costs and revenues are allocated to different cost centers. Three of these cost

centers are used to compute landing fees and rental rates: the Terminal Cost Center, the

Airfield Cost Center, and the Groundside Cost Center. The Terminal Cost Center includes

all costs and revenues generated in the terminal buildings. For instance, maintenance and

payments to the police in the terminals would be allocated to this cost center. Similarly,

revenues generated from concessions (mainly food, beverage, and car rentals) are attributable

to this cost center. The Airfield Cost Center includes, for example, the maintenance of the

ramp and cost recovery of investments in capital.2 Finally, the Groundside Cost Center is

mainly related to costs and revenues from vehicle parking and ground transportation vehicle

access (e.g. taxi cabs, charter buses, or limousines). The way that OAK and SFO compute

rental rates and landing fees is different, and it depends on the weight that each of the

aforementioned cost centers has in the charging rules.3

In the case of OAK, the rental charge is fully determined by the costs and revenues

attributable to the Terminal Cost Center. In particular, this cost center must break even

for the fiscal year. That is, the total amount that airlines reimburse the Port of Oakland

for using its terminal is computed as the difference between the operating costs minus the

revenues assigned to the Terminal Cost Center in the fiscal year. Then, this amount is

distributed to each of the individual airlines depending on how much area each airline leases

from the airport terminal (rental charge). Logically, the revenues and costs are not known

during the fiscal year. That is why quantities are forecasted, with the amounts regularized

the following year. If airlines pay in excess, the airport credits the corresponding amount,

and otherwise, airlines pay the shortfall. Landing fees are computed in a similar way. In this

case, it is the Airfield Cost Center which must break even. The difference between the costs

1Previous literature distinguishes three broad class of contracts: residual, compensatory, and hybrid.

Under the residual contract, airlines pay the net cost of running the airport after taking into account

aeronautical and non-aeronautical revenues. As a result, airlines are charged so that the airport breaks

even (revenues=costs). By contrast, with the compensatory approach, airlines pay agreed charges based

on recovery of costs allocated to the facilities and services they use. Finally, the hybrid method combines

elements of the previous two types of contracts. Under such an approach, revenues and costs are assigned

to different cost centers, and some of these centers are defined as residuals (break even) and others as

compensatory (cost recovery) (Daniel (2001)).
2For instance, a percentage of the costs of constructing a new taxiway or ramp are yearly allocated to the

airfield cost center until the total cost is recovered
3Further details about the method applied by each airport to compute fees and rates can be found in

the Oakland International Master Plan (2006) and in the 2006 Annual Operating Budget document for San

Francisco International Airport SFO.
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and revenues assigned to this cost center in a fiscal year is divided by the total estimated

landing weight of aircraft using the airport. This total weight is equal to the maximum gross

landing weight (MGLW) of aircraft used by airlines times the number of landings at OAK

each performs in the accounting period. This ratio yields landing fees. In our application,

the landing fee rate in OAK is equal to $1.460 per 1,000 pounds of aircraft MGLW.

In the case of SFO, the total amount that airlines face for using its terminals (rental

charge) equals the amount needed to cover 3/2 of the net operating costs of the Terminal

Cost Center plus 50% of the net operating surplus of the Groundside Cost Center. Note

that the Groundside Cost Center includes the highly profitable car parking activity. Hence,

including this term in the charge rules generally reduces the amount that airlines pay. Once

again, these quantities are estimated for the current fiscal year and regularized afterwards.

Once the amount is computed, it is allocated to airlines according to the surface they lease.

Finally, required total landing fees equal the amount needed to cover the net operating costs

of the Airfield Cost Center plus 50% of the sum of the Terminal Cost Center net costs and

the net operating surplus of the Groundside Cost Center. The ratio of this amount and the

forecasted total MGLW gives the landing fee rate. In 2006, SFO had a ratio equal to $3.213

per 1,000 pounds of aircraft MGLW.

3. Model

Our model captures the strategic behavior of travelers and carriers. We use a discrete

choice framework to model demand. On the supply side, carriers not only decide on fares,

but also on the frequency of their flights reaching the Bay Area. Such decisions are affected

by the landing fees and rental charges imposed by airports.

3.1. Demand: Demand for products offered by airlines is derived from the aggregation of

individual choices of heterogeneous travelers. Preferences over products are represented as a

function of individual characteristics and the attributes of products. Such an approach lets

us incorporate individual tastes of travelers for product characteristics and add heterogeneity

with respect to household income and distance between travelers’ location and the airports

in the Bay Area.

We define a market as a round trip directional city-pair. For instance, a market could be

the directional pair San Francisco - Atlanta, where San Francisco is the origin and Atlanta is

the destination. This market is different from Atlanta - San Francisco, where Atlanta is the

origin and San Francisco is the destination. Within a market, travelers can choose among

a set of differentiated products. We distinguish products according to the combination of
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their characteristics such as fare, frequency of flights, ticketing carrier, airport of origin

and destination, and itinerary of the trip. According to our market definition, any product

departing from either OAK or SFO with the same destination belongs to the same market.

Similarly, products arriving at either OAK or SFO using the same origin airport also belong

to the same market.

Suppose that we observe t = 1, ..., T markets with i = 1, ..., It consumers, and j =

1, ..., Jt products. The utility that a potential traveler i obtains from purchasing a ticket j

in market t is given by

uijt = αsfoÎ
sfo
jt + (αp + αyyi + σpνpi )︸ ︷︷ ︸

αip

pjt + (αf + σfνfi )︸ ︷︷ ︸
αif

f̂jt + (αd + σdνdi )︸ ︷︷ ︸
αid

D̂jt + ξjt +(1)

+ λd(Li) + xjtβ + σ0ν0
i + εijt

where

• Îsfojt is a dummy variable equal to one if the product is offered at SFO and zero if the

product uses OAK.

• pjt is the ticket price.

• yi is household income with probability distribution PY .

• f̂jt corresponds to the daily frequency of flights. We construct this variable as the

mean of the frequencies for each of the flight segments of the product jt.

• D̂jt is the average delay. This variable is equal to the mean of arrival delays for the

connecting (if one exists) and destination airports used by product jt.

• xjt is a vector of travel characteristics for product jt. Such characteristics are observed

by the econometrician: ticketing carrier, flight distance, dummy for direct flight, and

a dummy for destination airports with slot constraints.

• ξjt captures the unobserved-to-researcher characteristics of product j in market t. An

increase in ξjt makes the product j in market t more attractive to all consumers.

• djt(Li) determines the distance of individual i to the airport (OAK or SFO) used in

product j in market t. Li denotes the location of individual i in the Bay Area, with

probability distribution PL. This variable is interpreted according to the nature of

the traveler. If the individual i is originally departing from one of the airports of

the Bay Area, djt(Li) may be considered as the distance from his residence or work

place to the airport. On the other hand, if the traveler is arriving in the Bay Area,

djt(Li) is interpreted as the distance from the airport to his final destination (hotel

or office).
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• νpi , νfi , νdi and ν0
i account for the unobserved taste of travelers for fares, frequency,

delays and a constant respectively. As we previously mentioned, we allow interaction

between both price and other product characteristics and individual tastes to obtain

richer patterns of substitution. We assume that each of these random variables is

drawn from a normal distribution except the ones that interact with prices (νpi ). In

this case the distribution is assumed to be lognormal.

• εijt is a mean-zero error term, assumed to be i.i.d. across travelers and products and

to follow a type-I extreme value distribution.

The vector of demand parameters to be estimated is denoted by θ and includes: the

taste for product price (αp, αy, σ
p), for using SFO (αsfo), for daily frequency (αf , σ

f ),

for delays (αd, σ
d), for other product characteristics (β), for distance to airports (λ), and

the parameter σ0 associated with the constant. We assume that the marginal utility of

income (αy) is the same for all households independently of their income level and used

airport. Similarly, we assume that the distance sensitivity to airports (λ) is the same for

all travelers independently of their location and airport. Finally, αip, αif and αid are the

individual-specific coefficients linked to fares, frequencies, and delays respectively.

We also use county dummy variables to capture county-specific tastes for products

served by the two airports. These variables equal one if the traveler comes from (goes to)

the specified county and zero otherwise.

Ticket prices (pjt) and flight frequencies (f̂jt) are expected to be correlated with ξjt.

Hence the use of appropriate instrumental variables will be necessary to avoid inconsistent

estimates.

Following Berry, Levinsohn, and Pakes (1995), we distinguish the mean utility level of

product j in market t (δjt) from the traveler-specific deviation (µijt + εijt):

δjt = αsfoÎ
sfo
jt + αppjt + αf f̂jt + αdD̂jt + xjtβ + ξjt(2)

µijt = (αyyi + αpνpi )pjt + σfνfi fjt + σdνdiDjt + λdjt(Li) + σ0ν0
i(3)

Hence, the utility function can be rewritten as

uijt = δjt + µijt + εijt(4)
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Let ui0t denote the utility from the outside good of not flying from the considered

airports. The utility is random and is written as

ui0t = εi0t(5)

If we integrate over εijt, the probability that a traveler i chooses product j in market t

is

P (uijt ≥ uilt l 6= j/Îsfo, p, f̂ , D̂, x, d, δ, νi, Li, yi, θ) = sijt(p, f, δ(θ); θ) =(6)

=
exp[δjt + µijt]

1 +
∑
m∈Jt

exp[δmt + µimt]
,

where Îsfo, p, f̂ , D̂, x, d, and δ are vectors consisting of the corresponding variables.

Aggregate demand sjt(·) follows from integration over i and equals

sjt(p, f, δ(θ); θ) =

∫
exp[δjt + µijt]

1 +
∑
m∈Jt

exp[δmt + µimt]
dPν(νi)dPL(Li)dPY (yi) =(7)

=

∫
sijt(p, f, δ(θ); θ)dPν(νi)dPL(Li)dPY (yi)

For simplicity we assume that the distributions of νi, ε, Li, and yi are independent. Pν(·) is

the distribution of the unobservables, PL(·) is the distribution of the location of travelers in

the Bay Area, and PY (·) is the distribution of household income.4

3.2. Carriers and Airports: Airlines are assumed to be profit maximizing firms with

respect to ticket prices and frequencies. They may operate at one or several airports in the

Bay Area, and offer differentiated products within a market. At the same time, their profits

are a function of the landing fees and rental charges levied by the airports.

As we previously stated, the methodology used by each airport to compute these charges

is different and depends on the behavior of travelers and airlines. How the design of these

charges affects the strategy followed by carriers and travelers, and its effects on congestion

at airports, are the main contributions of this paper. In this section, we first develop the

profit function of airlines taking into account the fees levied by OAK and SFO, and then

show how these charges are currently determined.

4Given data limitations, we assume that the distributions of airport distance and household income are

independent. This is clearly not true since some correlation is expected between them.
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3.2.1. Profit function of airlines: Airlines maximize their profits with respect to fares and

frequency of flights reaching OAK or SFO. The equilibrium concept in the model is the

subgame perfect Nash Equilibrium. The game has two stages: in the first stage, airlines

simultaneously decide the flight frequency (f) of the last trip segment arriving in the Bay

Area. In the second stage, firms decide fares (p).

In our model, airlines only decide on the flight frequency of the trip segment arriving

in the Bay Area. This spoke route is directly affected by OAK or SFO airport charges.

However, products may be composed of several segments, and we hence implicitly assume

that the frequency decision for trip segments are independent of each other. As we will

see later, we use the optimality conditions for fares and flight frequencies to estimate the

parameters of the model and analyze the effects of changing the terms of the agreements

between carriers and airports.

Let Jct denote the set of products offered by carrier c in market t, and let Ωc denote the

set of spoke routes used by carrier c that have one of the Bay Area airports as an endpoint.

Individual spokes are denoted by r. Carrier c decides on fares and frequencies according to

the the following optimization problem:

max
f

max
p

Πc = max
f

max
p

[∑
t∈T

∑
j∈Jct

([pjt −mjt]sjt(p, f, δ(θ); θ)×Mt)−(8)

−
∑
r∈Ωc

f̃rc(FCostrc + βdDr(f) + feesr(s, p, f)× weightrc(s, p, f))︸ ︷︷ ︸
Total Operating Flight Cost

−

− RCc,sfo(s, p, f)−RCc,oak(s, p, f)− Fc

]
where Πc corresponds to profits of airline c. In the particular case of our application, profits

obtained from operating U.S. domestic flights during the third quarter of 2006. The first

line of the profit function corresponds to the usual form of oligopolistic models and captures

revenues from products offered by airline c. mjt represents the product-specific costs for

product j in market t. Mt is the total population that may be interested in traveling in

market t. In our application, Mt is computed as the geometric mean of the population of

the origin and destination cities.

One of the novelties in the specification of this type of profit function is the inclusion of

the term “Total Operating Flight Cost”, which captures the total airline cost for operating

flights landing at each of the two airports. This term depends on the number of flights that
11



the airline operates on each spoke r (f̃rc), landing fees applied by each airport (feesr), the

weight of the aircraft (weightrc), the level of congestion measured as the average arrival

delay of the airport used by the spoke r (Dr), the monetary value of one minute of delay

(βd), and the undelayed flight cost component (FCostrc). RCc,oak and RCc,sfo are the total

rental costs for carrier c in using the terminals of OAK and SFO respectively. Finally, Fc is

the total fixed cost incurred by the airline operating in the area.

Remember that landing fees (feesr) are airport specific; the methodology to compute

them is described below. Their values are endogenously determined, depending on fares,

flight frequencies, and the vector of market shares (s). A similar endogeneity problem arises

in the variables weightrc, RCc,oak and RCc,sfo. On the other hand, Dr only depends on flight

frequencies.

Note that we make a distinction between product delays in the utility function (D̂jt)

and airport delays in the profit function (Dr). While D̂jt is the mean delay for each of the

connecting and destination airports used by product jt, Dr refers to the average delay of

the airport in the Bay Area used by the spoke r. In our application, Dr = 25 minutes if the

spoke has SFO as an endpoint, and Dr = 18 minutes if the endpoint is OAK. Similarly, we

distinguish between the daily frequency of product jt (f̂jt) used in the utility function (1),

the daily frequency of flights of a carrier on one particular spoke (frc), and the total number

of operations in the quarter for the carrier on spoke r (f̃rc) appearing in the profit function

(8). While f̂jt corresponds to the mean of the frequencies for each of the segments of the

product jt, frc only takes into account the carrier’s flight frequency on spokes arriving at

OAK or SFO. Finally, we assume that frc is the same for all days of the quarter. Hence, f̃rc

is equal to frc times the number of days in the quarter (92 days).

Note that the first line of the profit maximization problem (8) refers to products. On

the other hand, the term “Total Operating Flight Cost” is linked to aircraft operations. This

distinction is important because it is possible that several products share the same aircraft

in the last connection reaching the Bay Area, even if they belong to different markets. For

instance, travelers flying from New York (JFK) to SFO via Boston (BOS) may share the

same aircraft in their last trip segment with travelers flying non-stop from BOS to SFO. Since

markets are defined as round trip directional city-pairs, passengers may belong to different

markets even if they fly non-stop. Note that people traveling non-stop between any US city

and the Bay Area may share the same aircraft but belong to different markets since they

may be residing in the Bay Area or just visiting it. Hence, the common assumption used

by the previous literature that markets are independent does not hold in our model. The

optimality conditions will capture this dependence across markets.
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Following Morrison and Winston (1989, 2007), we assume a deterministic relationship

between the airport delay and the total number of daily flights arriving at the airport. Let

Roak and Rsfo denote the set of spokes reaching OAK and SFO respectively. Then, the delay

function is given by

Dr =


exp(ωdoakf̄oak) if r ∈ Roak

exp(ωdsfof̄sfo) if r ∈ Rsfo

(9)

where ωdoak and ωdsfo are the congestion parameters, and f̄oak and f̄sfo are the total number

of daily operations at each of the airports. All three variables appearing in each line in (9)

are the same for all flights landing at the same airport. While Dr, f̄oak and f̄sfo are observed

from data, ωdoak and ωdsfo are computed to ensure that the equalities hold. As Morrison and

Winston (1989, 2007) point out, this specification lets the marginal delay be an increasing

function of the number of operations. Note that by construction, average delay is a source

of dependence across markets. Since changes in the flight frequency of one carrier operating

in a spoke route affect the average congestion at the airport, all products using the airport

will be affected even if they do not use the same spoke.

Landing fees (feesr) are the charge that airlines pay for each 1,000 lbs of maximum

gross landing weight (weightr) for each aircraft arrival.5 Note that each product involves a

round trip travel that may have several connections, where landing fees are levied. However,

for simplicity and since our main interest is in airports located in the Bay Area, the only

landing fees that we consider are those charged by OAK and SFO.

The weight of aircraft (weightrc) is an indicator of its passenger capacity and depends

on the type of airplane that carriers use on the spoke route r. For simplicity, all aircraft

used by a carrier on a spoke are assumed to have the same characteristics. Moreover, we

also assume that the weight of aircraft linearly depends on the total daily demand for the

segment arriving in the Bay Area (TDDrc), spoke route daily frequency (frc), the spoke

distance (distr), airline identity (carrc), and finally a dummy for SFO (Isfor). Therefore,

weightrc(s, p, f) = τ0 + τ1TDDrc(s, p, f) + τ2frc + τ3distr + τ4carrc + τ5Isfor + εwrc(10)

5We assume the same fee per 1,000 pounds of aircraft MGLW applies for all flights landing at the same

airport. In reality, some differences may apply depending on the relationship between carriers and airports

and type of airplane.
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where εwrc is the disturbance term. Total daily demand (TDDrc) and spoke route daily

frequency (frc) are expected to be correlated with the error term. Consequently, the use of

appropriate instruments is necessary to avoid inconsistent estimates.

Total daily demand (TDDrc) does not necessarily equal the sum of the demand for

products considered in our model. The reason is that we might find other travelers that use

the same flight but do not belong to any of the products used in our model specification.

Hence,

TDDrc(s, p, f) =
∑
t

∑
{kt|rkt=r

k∈Jct}

skt ×Mt

92
+ResTDDrc(11)

where the first term on the right hand side (RHS) in (11) captures the demand for products

considered in our specification that uses the spoke route r and carrier c. rkt denotes the last

spoke used by product kt to reach one of the airports in the Bay Area. While TDDrc is the

daily demand for spoke r and carrier c, skt×Mt is the product demand for the whole quarter.

If we assume that demand is the same for any day of the quarter, we have to divide this term

by the number of days of the quarter, set at 92. ResTDDrc corresponds to travelers that

do not use any of the products of the model but still use the same airline and spoke r (for

instance, one-way travelers or travelers connecting at SFO or OAK). This term is assumed

to be independent of the demand for products accounted for in our model.

The terms mjt× sjt×Mjt, RCc,oak, RCc,sfo and “Total Operating Flight Cost” are part

of variable costs. Hence, their derivative with respect to the demand for a particular product

will give us its marginal cost (mcjt). Letting qjt = sjt×Mt and using the profit function (8),

mcjt(s, p, f) = mjt +
∑
r∈Ωc

f̃rc

(
∂feesr
∂qjt

×weightrc + feesr ×
∂weightrc

∂qjt

)
+(12)

+
∂RCc,sfo
∂qjt

+
∂RCc,oak
∂qjt

Finally, we assume that both the product marginal cost (mcjt) and the undelayed

flight cost (FCostrc) linearly depend on a vector of exogenous costs shifters (wmjt , w
f
rc) via

the respective parameters (γm, γf ) and a random term that captures unobserved product

characteristics (ωmjt , ω
f
rc).

6 That is,

6We could have considered the more standard log linear form for the product marginal cost. However, in

our application we found that 0.6% of the estimated mcjt are negative. This result prevents us from using

the log form.
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mcjt(s, p, f) = wmjtγm + ωmjt(13)

FCostrc = wfrcγf + ωfrc(14)

The parameters wmjt will be estimated by equating (13) to (12), with the value of (12)

generated as explained below.

3.2.2. Landing Fees and Rental Building Rates: An important question is how airports de-

termine landing fees and terminal building rental rates, since these two variables will have

an impact on the strategy of airlines. The methodology to compute these charges is airport

specific and depends on the costs and revenues generated at airports. As we will see later,

different methodologies lead to different responses of airlines and congestion at airports.

OAK airport:

As we previously stated, at OAK the Airfield Cost Center and the Terminal Cost Center

must break even for the fiscal year. We compute total expenditures and deduct revenues. The

residual is the amount that airlines must compensate the airport for using its infrastructure.

Landing fees at OAK are determined as the ratio between the difference of the costs

and revenues attributed to the Airfield Cost Center (ARCostoak) and the total scheduled

maximum gross landing weight of carriers at OAK (TWeightoak) for the fiscal year:

feesr(s, p, f) =
ARCostoak

TWeightoak(s, p, f)
for r ∈ {Roak}(15)

where Roak is the set of spoke routes at OAK.

Note that our application only includes product data from U.S. domestic flights during

the 3rd quarter of 2006, while the methodology to determine landing fees and rental rates

uses fiscal yearly data, as well as the weight of international, cargo, and general aviation

flights. The lack of data, in some cases, and computer limitations, in others, constrain our

analysis to U.S. domestic products for the 3rd quarter of 2006. Consequently, the variable

TWeightoak is equal to

TWeightoak(s, p, f) =
∑

r∈Roak

∑
c

weightrc(s, p, f)× f̃rc +ResTWoak(16)

The first term on the RHS in (16) corresponds to the total weight of all domestic flights

operating at OAK that use one of the products of the model (U.S. domestic flights from the
15



3rd quarter of 2006). On the other hand, the term ResTWoak captures the total weight of

flight operations that do not belong to products of our model. This term corresponds to the

weight of international and cargo flights, as well as domestic flights from quarters of 2006

others than the 3rd. For simplicity, the latter term is assumed to be independent of the

demand for products taken into account in our application.

Similarly, airlines also compensate OAK for the use of its terminals. The total terminal

rental charges paid by airlines are equal to the difference between the operating expenditures

and revenues of the Terminal Cost Center (TCostoak):

TCostoak(s, p, f) = (OEoak −ORoak(s, p, f))(17)

where operating revenues (ORoak) are generated by concessions located in the terminals

(mainly retail shops, restaurants, and car rentals). Operating expenditures (OEoak) are

costs associated with operating and maintaining the buildings and the cost recovery of cap-

ital investments (for instance, construction of a new terminal). Such airport net costs are

allocated among airlines according to the percentage of the total terminal surface leased by

each airline (Usagec,oak). Then, the total rental charge that airline c must pay OAK is equal

to

RCc,oak(s, p, f) = TCostoak(s, p, f)× Usagec,oak =(18)

= (OEoak −ORoak(s, p, f))× Usagec,oak

We assume that expenditures (OEoak) are exogenous. On the other hand, operating

revenues (ORoak) depend on the number of travelers. As we previously stated, ORoak basi-

cally comes from shops, restaurants, and car rentals located at terminals, and such revenues

depend on the number of travelers using the airport (TTravelersoak). If we assume a linear

relationship between concession revenues and the number of travelers, then

ORoak(s, p, f) = ψterminal,oak × TTravelersoak(s, p, f)(19)

where ψterminal,oak is considered as the average operating revenue per traveler. Other spec-

ifications could be considered. For instance, we could assume that the concession revenue

per traveler is decreasing in the total quantity of passengers. That would be more consistent

with Van Dender’s (2007) empirical results.
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Once again, the total number of travelers using OAK may not be equal to the sum of

the demand for products considered in our model. That is,

TTravelersoak(s, p, f) =
∑

{kt|rkt∈Roak}

skt(p, f, δ(θ); θ)×Mt +ResTToak(20)

where the first term on the RHS in (20) corresponds to the total demand for products

considered in our model, and ResTToak is the demand not accounted in the products of our

specification. For simplicity, the latter term is assumed to be independent of the demand

for products took into account in our application.

SFO airport:

The way that SFO determines charges is different than the one used by OAK. In this

case, the total landing fee revenues equal the amount needed to cover the net operating costs

of the Airfield Cost Center (ARCostsfo), plus 50% of the operating deficit (or surplus) in

the Terminal (TCostsfo) and Groundside (GCostsfo) Cost Centers. The ratio between the

total landing fee revenues and the total scheduled maximum gross landing weight of carriers

(TWeightsfo) is the fee (feesr) that airlines pay per 1,000 pounds of MGLW of aircraft.

That is,

feesr(s, p, f) =
ARCostsfo + 1

2
[TCostsfo(s, p, f) +GCostsfo(s, p, f)]

TWeightsfo(s, p, f)
(21)

for r ∈ {Rsfo}. Rsfo corresponds to the set of spoke routes at SFO. Note that while

SFO includes the highly profitable vehicle parking and ground transportation vehicle access

activities (GCostsfo) in computing landing fees, OAK only considers the costs assigned to

its Airfield Cost Center (ARCostoak). The net operating cost of the Terminal Cost Center

in SFO (TCostsfo) is equal to the difference between operating expenditures (OEsfo) and

the operating revenues (ORsfo):

TCostsfo(s, p, f) = (OEsfo −ORsfo(s, p, f))(22)

As at OAK, while operating expenditures (OEsfo) are assumed to be exogenous, operating

revenues (ORsfo) linearly depend on the number of travelers. Thus,

ORsfo(s, p, f) = ψterminal,sfo × TTravelerssfo(s, p, f)(23)

where ψterminal,sfo is the average operating revenue per traveler.
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We define the net costs of the Groundside Cost Center (GCostsfo) as the difference

between costs (GCsfo) and revenues (GRevsfo) coming from groundside operations:

GCostsfo(s, p, f) = GCsfo −GRevsfo(s, p, f)(24)

where the term GCsfo is assumed to be exogenous. We assume a linear relationship between

GRevsfo and the total number of enplaned travelers:

GRevsfo(s, p, f) = ψground,sfo × TTravelerssfo(s, p, f)(25)

where ψground,sfo is interpreted as the average revenue per enplaned passenger coming from

the groundside operations (for instance, revenues from parking the car at the airport). The

total number of enplaned travelers using SFO is not necessarily equal to the total demand

for products considered in our application:

TTravelerssfo(s, p, f) =
∑

{kt|rkt∈Rsfo}

skt(p, f, δ(θ); θ)×Mt +ResTTsfo(26)

where ResTTsfo corresponds to demand that is not included in products of our model.

If we look again at the RHS in the fee rule (equation (21)), the total scheduled maximum

gross landing weight of carriers at SFO (TWeightsfo) is equal to,

TWeightsfo(s, p, f) =
∑

r∈Rsfo

∑
c

weightrc(s, p, f)× f̃rc +ResTWsfo(27)

where the first term of the RHS accounts for the weight of aircraft using products considered

in our application, and ResTWsfo captures the total weight of flight operations that does not

belong to products of our model (mainly international and cargo flights, as well as domestic

flights from quarters of 2006 others than the 3rd).

Finally, the total terminal rental charges paid by airlines at SFO equal the amount

needed to cover 3/2 of the net operating costs of the Terminal Cost Center (TCostsfo), plus

50% of the calculated net operating surplus of the Groundside Cost Center (GCostsfo). Then

the total rental charge that airline c pays SFO for using its terminal is equal to

RCc,sfo(s, p, f) =

(
3

2
TCostsfo(s, p, f) +

1

2
GCostsfo(s, p, f)

)
× Usagec,sfo(28)
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where Usagec,sfo is the percentage of the total terminal surface leased by the airline. Remem-

ber that OAK only uses revenues and costs assigned to the Terminal Cost Center (TCostoak)

to compute its rental rate (RCc,oak).

4. Solving the carriers’ decision problem

In this section we describe the optimality conditions for airlines. As we previously

noted, our model is a two stage game where carriers first decide on flight frequencies and

afterwards decide on the price of tickets. As usual, this game is solved backwards: first,

we derive the optimality conditions for fares given frequencies, and then we derive the first

order conditions for frequencies taking into account the response of fares.

4.1. Second Stage: Fares. Solving the second stage, the first order condition for maxi-

mizing the profit function of airline c with respect to the fare pj′t′ is equal to

∂Πc

∂pj′t′
=
∑
t∈T

∑
j∈Jct

(pjt −mjt)
∂sjt
∂pj′t′

Mt + sj′t′Mt′ −(29)

−
∑
r∈Ωc

f̃rc

[
∂feesr
∂pj′t′

weightrc + feesr
∂weightrc
∂pj′t′

]
− ∂RCc,oak

∂pj′t′
− ∂RCc,sfo

∂pj′t′
= 0

where t′ ∈ T and j′ ∈ Jct′ . In our application, the product-specific costs (mjt) are not

observed. We will use the fare first order conditions to recover them. Then, we can compute

the marginal costs (mcjt) using (12) and estimate the parameters appearing in the first order

conditions for flight frequency, which are presented below.

Now we turn to computation of the various derivatives appearing on the RHS of (29).

As we will see, derivatives in the F.O.C. end up being functions of the derivatives of the

market shares with respect to fares. Hence, those derivatives are easily computed once the

demand (1) and the aircraft weight expressions (10) are estimated. Following Nevo (2000a),

the derivative of the market share of product j in market t with respect to the price of

product j′ in market t′ is

∂sjt
∂pj′t′

=



∫
αisijt(1− sijt)dPν(νi)dPL(Li)dPY (yi) if j = j′ & t = t′

−
∫
αisijtsij′t′dPν(νi)dPL(Li)dPY (yi) if j 6= j′ & t = t′

0 if t 6= t′

(30)
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where sijt = exp(δjt + µijt)/
[
1 +

∑
m∈Jt exp(δmt + µimt)

]
is the probability of individual i

purchasing the product j in market t (similar interpretation for sij′t′). αi is the previously

defined individual-specific coefficient associated with the ticket price.

If we look at the gradient of landing fees (fees) with respect to fares in (29), and

assuming that the net operating costs of the Airfield Cost Center (ARCostC)7 are exogenous,

the derivative of the landing fees with respect to fares at OAK is equal to

∂feesr
∂pj′t′

= − feesr
TWeightoak

∂TWeightoak
∂pj′t′

for all r ∈ {Roak}(31)

In the above expression, we use (16) to compute the derivative of the total scheduled landing

weight (TWeightoak) with respect to fares.

In the case of SFO,

∂feesr
∂pj′t′

=
1

TWeightsfo

[
1

2

∂(TCostsfo +GCostsfo)

∂pj′t′
− ∂TWeightsfo

∂pj′t′
feesr

]
(32)

for all r ∈ Rsfo. Differences in the derivatives arise because SFO landing fees depend on

the Terminal and Groundside Cost Centers while in OAK they do not. We use (22) and

(24) to compute the derivatives of the net costs of the Terminal Cost Center (TCostsfo) and

the Groundside Cost Center (GCostsfo) respectively. Similarly, using (27) we obtain the

derivative of the total scheduled landing weight (TWeightsfo) with respect to fares.

If we look again at the RHS in (29), we use (10) to compute the derivative of the weight

of aircraft (weightrc) with respect to ticket prices. Finally, the derivatives of the cost for

carrier c associated with the rental of terminals are given by

∂RCc,oak
∂pj′t′

= −∂ORoak

∂pj′t′
× Usagec,oak(33)

∂RCc,sfo
∂pj′t′

= −
[

3

2

∂ORsfo

∂pj′t′
+

1

2

∂GRevsfo
∂pj′t′

]
× Usagec,sfo(34)

for OAK and SFO respectively. Once again, differences in both derivatives arise because

OAK and SFO rental charges are determined using different mechanisms.

As noted above, the previous derivatives are computed using estimates from the demand

(1) and aircraft weight equations (10). Then we plug their values in the fare F.O.C. (29)

7We may argue that ARCostC depends on the number of landings at the airports. That is, the higher

the number of operations, the higher are the costs of maintenance of the ramp. That would affect the costs

attributed to the Airfield Cost Center. For simplicity, we do not consider this effect.
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and solve for the product-specific cost (mjt). This result lets us obtain the marginal costs

(mcjt), estimate the marginal cost equation (13), and the rest of parameters appearing in

the first stage of the game (optimal decision of carriers with respect to frequencies).

4.2. First Stage: Frequencies. Once we derive the optimality conditions for prices, we

solve the first stage of the game. The first order condition of the profit function of carrier c

with respect to the daily frequency of its flights operating on a particular spoke r′ is given

by

∂Πc

∂fr′c
=

∑
t∈T

∑
j∈Jct

[
(pjt −mjt)

∂sjt
∂fr′c

Mt +
∂p∗jt
∂fr′c

sjtMt

]
−(35)

− 92
[
feesr′ × weightr′c + βdDr′ + FCostr′c

]
−

−
∑
r∈Ωc

f̃rc

[
∂feesr
∂fr′c

weightrc + feesr
∂weightrc
∂fr′c

+ βd ∂Dr

∂fr′c

]
− ∂RCc,oak

∂fr′c
− ∂RCc,sfo

∂fr′c
= 0

where r′ ∈ Ωc.
∂p∗jt
∂fr′c

denotes the derivative of the optimal fare with respect to frequency.

In our application, we will use this condition to estimate the monetary value of one minute

delay (βd) and the undelayed flight cost component (FCostrc). Moreover, we also use this

expression to analyze the impact of changing the structure of the landing fee and rental

charge rules.

The difficulty in (35) lies in computing the gradient of the optimal fare with respect to

frequencies (
∂p∗jt
∂fr′c

), and the derivative of market shares with respect to frequencies (
∂sjt
∂fr′c

). Let

us start with
∂p∗jt
∂fr′c

. We assume that the equilibrium pricing function is smooth with respect

to flight frequency and take an approach similar to Villas-Boas (2007) and Fan (2012). We

compute the total derivative of the price optimality condition (29) with respect to fares

(dpk, k = {1, · · · , J}) and daily flight frequency (fb, b = {1, · · · , |Ω|}), where J is the total

number of offered products (J =
∑
t∈T

Jt), and |Ω| is the total number of spokes operated by

airlines at both airports in the Bay Area. Let Ψp
c denote the J × J ownership matrix with

the general element Ψp
c(j
′t′, k) equal to one when both products j′t′ and k are offered by

carrier c and zero otherwise. Similarly, let Ψf
c denotes the J × |Ω| ownership matrix with

the general element Ψf
c (j
′t′, b) equal to one if the product j′t′ and the spoke b are operated

by carrier c. Then the total derivative of the first order condition (29) with respect to fares

for product j′t′ and carrier c is given by
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∑
k

Ψp
c(j
′t′, k)

∂2Πc

∂pj′t′∂pk︸ ︷︷ ︸
Gp

c (j′t′,k)

dpk +
∑
b

Ψf
c (j
′t′, b)

∂2Πc

∂pj′t′∂fb︸ ︷︷ ︸
Hp

c (j′t′,b)

dfb = 0(36)

We can rewrite the previous expression in a matrix form. Let Gp
c be a J×J dimensional

matrix with component Gp
c(j
′t′, k). Similarly, let Hf

c be a J × |Ω| dimensional matrix with

component Hf
c (j′t′, b). Then, condition (36) can be written as

Gp
cdp+Hf

c df = 0(37)

where dp and df are column-vectors of dpk for k = {1, · · · , J} and dfb for b = {1, · · · , |Ω|}
respectively. Note that the components of the matrices Gp

c and Hf
c are different from zero

only if the pairs (pj′t′ , pk) and (pj′t′ , fb) belong to carrier c.

We can express the previous equality in a more general form where all carriers are

included. Letting Gp =
∑
c

Gp
c and Hf =

∑
c

Hf
c , then the following equality also holds:

Gpdp+Hfdf = 0(38)

If Gp is a full rank matrix, the derivative of optimal fares with respect to flight frequen-

cies is given by

dp∗

df
= −G−1

p Hf(39)

Once we derive dp∗

df
, we compute the derivative of market shares with respect to flight

frequencies (
∂sjt
∂fr′c

). The derivative of the market share of product j in market t with respect

to the flight frequency of carrier c operating in the spoke r′ (fr′c) is given by

∂sjt
∂fr′c

=

∫
sijt

(
κr
′c
ijt −

Jt∑
n=1

κr
′c
intsint

)
dPν(νi)dPL(Li)dPY (yi)(40)

where

κr
′c
iΘt = αip

∂p∗Θt
∂fr′c

+
1

eΘt

(
αif1I{rΘt = r′ ∩ Θ ∈ Jct}+ αid

∂DrΘt

∂fr′c

)
(41)

In (41), Θ denotes a product of market t (Θ ∈ {j, n} in equation (40)), and 1I{·} is an

indicator function equal to one if the condition inside brackets holds and zero otherwise. As
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we previously noted, travelers care about the mean of the flight frequency and average delay

of each of the connecting and destination airports used by products, but the derivatives (40)

refer to flight frequencies of the last spoke reaching OAK or SFO. That is why we introduce

eΘt as the number of connections of the product. Also remember that we already defined

αip, αif , and αid as parameters associated with fares, frequencies, and delays respectively.

The last term on the RHS in (41) corresponds to the derivative of the previously defined

average flight delay at each airport (9), and it is given by

∂DrΘt

∂fr′c
=


exp(ωdaf̄a)ω

d
a if rΘt ∈ Ra

0 if rΘt /∈ Ra

(42)

where a ∈ {oak, sfo}.
The derivative of the market share with respect to flight frequency in (40) not only

depends on own characteristics but also on characteristics of other products. This effect is

captured by the summation in the expression. κr
′c
ijt depends on the relationship between the

product jt and the spoke-carrier pair r′c. Looking at (41), if jt uses r′ (rjt = r′) and carrier

c, then κr
′c
ijt not only depends on the derivative of the optimal fare with respect to frequency

(
∂p∗Θt

∂fr′c
), but also on the parameters linked to the demand for flight frequency (αif ) and also

delay (αid
∂Drjt

∂fr′c
). On the other hand, if the product jt does not use r′ and carrier c but still

uses the same airport, then κr
′c
ijt is no longer affected by αif but still depends on the airport

delay and the optimal fare derivative. Finally, if jt does not use airport a then κr
′c
ijt only

depends on the derivative of the optimal fare with respect to frequency. Similar reasoning

holds for κr
′c
int.

Once we compute
∂p∗jt
∂fr′c

and
∂sjt
∂fr′c

, the rest of the derivatives appearing in the frequency

F.O.C. (35) are straightforward. In particular, the derivative of the landing fee with respect

to frequency for OAK is equal to

∂feesr
∂fr′c

= − feesr
TWeightoak

∂TWeightoak
∂fr′c

for r′ ∈ Roak(43)

where we use (16) for the derivative of the total scheduled landing weight.

In the case of SFO the derivative is equal to

∂feesr
∂fr′c

=
1

TWeightsfo

[
1

2

∂ (TCostsfo +GCostsfo)

∂fr′c
− ∂TWeightsfo

∂fr′c
feesr

]
(44)
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for r′ ∈ Rsfo, where the derivative of the net operating costs of the Terminal Cost Center

(TCostsfo) follows from computing the derivative of (22). Similarly, we use (24) for the

derivative of the net costs of the Groundside Cost Center (GCostsfo). In addition, we use

(27) to compute the derivative of the total scheduled landing weight (TWeightsfo).

If we look again at the RHS in (35), we use (10) to compute the derivative of the weight

of aircraft (weightrc) with respect to ticket prices. Finally, the derivatives of airline c’s

terminal rental charges with respect to frequency for OAK and SFO are respectively given

by

∂RCc,oak
∂fr′c

= −∂ORoak

∂fr′c
× Usagec,oak(45)

∂RCc,sfo
∂fr′c

= −
[

3

2

∂ORsfo

∂fr′c
+

1

2

∂GRevsfo
∂fr′c

]
× Usagec,sfo(46)

5. Data and Statistics

5.1. Data Description: We perform the estimation of the model for the third quarter of

2006. In order to conduct the analysis, several data sources are used. We can classify them

according to the information they provide. First, we use the Airline Origin and Destination

Survey (DB1B), the T-100, the Airline On-Time Performance data sets from the U.S. Bu-

reau of Transportation Statistics, and aircraft manufacturers’ websites to obtain information

about the product choices of travelers and their characteristics. Second, the Federal Avi-

ation Administration website, competition plans, and airports’ board meeting proceedings

give detailed financial information about airports and the methodology they use to determine

landing fees and rental charges. Finally, we use demographic data from the American Com-

munity Survey (ACS), and add extremely useful demographic information provided by the

2006 Airline Passenger Survey conducted by the Metropolitan Transportation Commission

of the San Francisco Bay (2006 MTC Survey).

The Appendix contains further details about data sources and construction of the data

sets.

5.2. Summary Statistics:

5.2.1. Choice and Flight Characteristics Statistics: Summary statistics for the main flight

characteristics variables are provided in Table 1. It shows the mean and standard deviation

of product characteristics for each of the airports and also for both airports (column denoted

as “Both”). As expected, the busiest airport (SFO) is the one with the highest mean fares
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and daily frequency. On average, products using SFO carry fewer passengers but the number

of these products is higher than at OAK. In the 3rd quarter of 2006, travelers purchased,

on average, 171.84 tickets of each product served at SFO, and 305.88 at OAK. If we look

at distance, measured as the sum of the distance of each trip segment, products from SFO

offer slightly longer trips than OAK. The table also shows the percentage of products offered

by carriers. We remark that United Airlines (UA) is the carrier with the highest presence

at SFO, with Southwest (WN) having the highest presence at OAK. It is also interesting to

note that several carriers are established in both airports. This is not the case with WN and

Northwest Airlines (NW), which only operate in OAK and SFO respectively in the sample

year. In our application, the percentage of products using airports with slot constraints is

higher at SFO than at OAK.8 Finally, we observe that products using SFO have, on average,

more delays. This is partly explained by the higher average delay at SFO (25 minutes) than

at OAK (18 minutes).

Table 2 summarizes the number of products and number of operating carriers within

markets. Both airports offer similar destinations, with 402 of the 446 existing markets having

products using OAK and SFO. We also observe that SFO offers on average more products

within a market. Similarly, SFO has, on average, higher number of operating carriers per

market.

Table 3 reports statistics for spoke-carrier pairs using OAK and SFO. In particular, it

shows the mean and standard deviation of MGLW, the daily flight frequency, and the total

daily capacity (measured as the product of MGLW times frequency) of the spokes operated

by each carrier. As we previously mentioned, the spoke-carrier pair characteristics are not

the same as the product characteristics since several products may use the same spoke and

carrier. On average, the daily frequency of flights arriving at SFO is higher than at OAK.

We also observe differences in the average MGLW of aircraft landing at the two airports.

That explains why SFO offers 30% more capacity than OAK. Finally, the total number of

spokes operated by airlines is also higher at SFO (87 vs 72).

Tables 4 and 5 show statistics for spoke routes arriving at each airport broken down by

carrier. They report the mean and standard deviation of daily flight arrivals, MGLW, and

daily capacity for the spoke-carrier pairs at each of the two airports. In OAK (Table 4),

WN is not only the airline that operates the most spokes (45), but also one of the carriers

offering, on average, the highest number of flights and highest daily capacity on each of the

spokes. The table also shows the degree of standardization of aircraft. In the particular case

8Slot constrained markets are the ones that have as destinations the airports JFK, LGA, DCA , and

ORD.
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of WN, the standard aircraft is the Boeing 737. That explains its low weight variance. If we

look at Table 5, SFO is one of the hubs for United Airlines (UA). That may be the reason

why UA operates a high number of spokes and offers the highest daily capacity. Finally,

except for WN (in 2006 only operating in OAK), the presence of airlines (measured as the

number of spokes they operate) is higher at SFO than at OAK.

Table 6 shows financial details of the airports for the year 2006. Such information is

useful when we incorporate landing fees and rental rates in our model. While OAK charges

$1.460 per landed 1,000 pounds, SFO charges $3.213. We also observe that the number

of enplaned passengers at SFO is more than double that of OAK. The terminal operating

revenues (ORa for a ∈ {oak, sfo}) are the amount that airports receive from concessions:

food, beverage, retail stores, and rental cars. The bigger shopping and restaurant area in

SFO terminals explains the large difference between the operating revenues of both airports

(17 million dollars at OAK vs 126 million dollars at SFO). Assuming a linear relationship

between operating revenues and enplaned passengers, we can obtain the average concession

revenue per enplaned passenger (ψterminal,a). We also observe that the groundside revenues

at SFO (GRevsfo) are double those at OAK. If we divide this term by the total number

of enplaned passengers in 2006, we obtain the groundside revenue per enplaned passenger

(ψground,a). Interestingly, this value is higher at OAK than SFO, which may be explained

because of the higher OAK car parking rates. Finally, as expected, the total weight (aircraft

weights times the number of operations in 2006) at SFO is more than double that of OAK.

5.2.2. 2006 Airline Passenger Survey Statistics: In our estimation, this survey helps us to

identify demographic variables for passengers (household income and distance to airports).

Table 7 and Table 8 summarize the results for the 2006 MTC survey. Table 7 shows the

joint distribution of the survey respondents using SFO according to their county of ori-

gin/destination and household income. Similarly, Table 8 analyzes the distribution of re-

spondents for OAK. We group counties according to their geographical location and sim-

ilarities in income distributions. This decision has been made because of the low number

of observations in some cases (second column of both tables). We observe that it is more

likely that a traveler chooses the closest airport for his trip. In the case of SFO, 66.8% of

the respondents are located in the same county as the airport or in the county next to it

(San Mateo and San Francisco counties). Similar comments may be made for OAK, where

travelers are more likely to come from Alameda (where OAK is located) and Contra Costa

counties (56.8% of the respondents). If we look at household incomes, differences between

the two airports arise for the populations with very low and very high income. If we compare
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the last row of both tables, we observe that the probability that a traveler belongs to the

household income group below $25,000 is 3.8% for SFO and 6.8% for OAK. For the highest

income group, the probability is higher for travelers using SFO rather than OAK (16.7% vs

11.9%). For the rest of the income groups the probabilities are quite similar. As we will

explain more carefully below, we will use the probability distributions appearing in both

tables to increase the efficiency of the estimates of our model (columns 3 and 4, and row 7

of each table).

6. Estimation

The model is estimated as follows: first, we estimate the parameters of the weight

equation (10) by two-stage least squares (TSLS); second, we estimate the demand (1) and

marginal cost equations (13) by the general method of moments (GMM); finally, we use the

first order conditions with respect to frequencies in (35) to estimate the valuation of one

minute delay (βd) and the parameters (γf ) of the undelayed cost equation (14). While the

estimation of (10) is straightforward, some remarks are necessary for the GMM procedure,

and the estimation of βd and γf . In this section, we sketch the estimation procedure. Further

details are provided in the appendix.

The GMM estimation procedure follows the nested fixed point approach suggested by

Petrin (2002). Petrin extended the algorithm proposed by Berry, Levinsohn and Pakes

(1995) (BLP) by combining data from different sources. The model is estimated using a

nonlinear GMM method. Three sets of moment conditions are used: one derived from the

difference between the observed market shares and predicted market shares, the marginal

cost moments, and other moment conditions that add extra demand information using the

2006 MTC Survey.

From the mean utility equation (1) and given δjt, θ and product characteristics, we

can derive the moment condition related to the unobserved-to-researcher characteristics of

product j in market t (ξjt). Using appropriate instruments (zd) to control for price and

frequency endogeneity, our moment condition can be written as

E[zdjtξjt] = 0(47)

The second set of moments corresponds to the marginal cost condition and equals

E[zmjtω
m
jt ] = 0(48)
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where ωmjt is the residual of the marginal cost equation (13) and zmjt are cost instruments.

The last set of moments of the GMM procedure is constructed using the 2006 MTC

Airline Survey Data. Adding other data sources is an extremely useful tool for identification

(Petrin (2002)). In our application, the 2006 MTC Airline Survey Data give us interesting

demographic information about travelers conditional on the use of one of the two airports

in the Bay Area. In particular, we use information about travelers’ distances to the airports

and their household incomes. Basically we construct moments that match the predicted

average consumer demographics obtained from the moments (47) with the average consumer

demographic characteristics from the 2006 MTC survey. In particular, the extra moment

conditions will match the probability that a traveler i using one of the airports (a) comes

from/goes to a specific county (C) and belongs to a income group (Y). That is,

ηc(C, a) = E [Li ∈ C|{i uses airport a}](49)

ηy(Y , a) = E [yi ∈ Y|{i uses airport a}](50)

where

C ∈ {S.Francisco-S.Mateo, Sta Clara, Alameda-C.Costa, Solano-Napa, Sonoma-Marin}

Y ∈ {<$25k, $25k-50k, $50k-75k, $75k-100k, $100k-150k, $150k-200k,>$200k}

a ∈ {OAK,SFO}

and where Li and yi in (49) and (50) are the county of origin/destination and household

income group of individual i respectively. ηc(C, a) and ηy(Y , a) are the probabilities from

the 2006 MTC survey (Tables (7) and (8)). The RHS expressions in (49) and (50) are the

expected values predicted by our model and computed using the simulated market shares in

(7). These extra conditions apply for all income groups, counties and airports.

In a final step, we estimate the undelayed flight cost component (FCostrc) and the

monetary value of one minute delay (βd). Under the assumption that FCostrc linearly

depends on a vector of cost shifters (wfrc) and a random term (ωfrc) (equation 14), we use the

F.O.C. with respect to frequencies in (35) to identify βd and the parameters linked to the

undelayed flight cost component (γf ). We combine equations (35) and (14), substituting the

variable FCostrc in (35) using the RHS of the equation (14). Then, the expression we use

for the estimation of βd and γf is given by
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Once the value of the LHS expression is computed, the estimation of the parameters follows

from applying OLS. We did not include (51) in the GMM algorithm because the estimation

procedure would be infeasible from a computation-time point of view.

Finally, the fitted value for FCostrc equals the product of the estimates for γf times

the cost shifters (wfrc).

6.1. Instruments and Identification: As we previously stated, fares and frequencies are

likely correlated with the unobserved-to-researcher variable ξit (see (1)) and the residual of

the marginal cost equation (13). Similarly, total demand and frequency are also correlated

with the disturbance term in the weight equation (10). Consequently, we need instruments

to avoid inconsistent estimates. We use similar instruments to those proposed by Berry and

Jia (2010) and Nevo (2001).

We use:

• Demand characteristics considered exogenous: distance, airport, operating carrier,

direct flight, and airport with slot constraints.

• Number of flight connections.

• Dummy indicating if the connecting/destination airport is a hub for the carrier op-

erating the flight.

• Dummy for trips longer than 1,500 miles.

• The mean of the distance of all products offered by competing carriers in the market.

• The mean of the distance of all products offered by the own carrier in the market.

The power of using other product characteristics depends on the proximity in charac-

teristics space between products; products with closer substitutes likely have lower prices

and/or higher frequency of flights.

In equation (1), we also control for the flight frequency endogeneity as follows: we first

regress the number of daily departures on distance, market size (measured by geometric mean

population of the origin and destination cities), number of competitors, carrier dummies,

dummies for trips longer than 1,500 miles, a dummy indicating if the connecting/destination
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airport is a hub for the carrier operating the flight, and a dummy for SFO. Then we include

the residuals, actual minus fitted frequencies, as instruments. The idea is that what is

left after controlling for several factors (residuals) is correlated with the marginal cost but

uncorrelated with the demand unobservable (ξjt).

A similar approach is used for the instruments in the weight equation (10). The only

difference is that there are not connecting flights. Therefore, we cannot use the number of

connections and average distance of competing products as instruments. Finally, we also add

potential demand as an instrument (geometric mean population of the origin and destination

metropolitan statistical areas).

The identification strategy is similar to the previous literature: 1) Reliance on substan-

tial variation of product and demographic characteristics across markets, 2) Use of micro

data (2006 MTC Survey), which lets us add extra moment conditions that match the predic-

tions of our model with the survey (equations (49) and (50)), 3) Imposing a Bertrand-Nash

equilibrium in prices, 4) Using the profit first order conditions with respect to flight fre-

quency to estimate the cost of operating a flight (FCostrc) and the cost of one minute

delay (βd) (equation (51)). In order to identify these two unobservable variables, we assume

that FCostrc linearly depends on some factors: distance, operating carrier, airport, and a

disturbance term (see (14)).

7. Estimation Results

7.1. Demand Parameters: Table 9 reports the demand estimates (1), which are consistent

with the previous literature (see Berry and Jia (2010)). The standard errors are reported

in parenthesis. While the second column corresponds to a logit model without instruments

(OLS column), the third column reports estimates using instruments (IV column). In these

model specifications, demand linearly depends on fares, distance, flight frequency, a dummy

for direct flights, a dummy for SFO airport, carrier dummies, a dummy for slot constrained

destinations, and delays. Most of the estimates have the expected sign. As we previously

noted, fares and flight frequencies are likely correlated with the unobserved-to-researcher

characteristics (ξjt). Without correcting for endogeneity, the price and frequency coefficients

are biased upwards and downwards respectively (OLS column). One of the limitations of

these two model specifications is that they do not capture important aspects of travelers’

heterogeneity.

Column 4 reports estimates for the full model introducing heterogeneity of travelers. If

we look at the last ten variables, σ0, σf , and σd capture the individual taste for a constant,

frequency of flights and delays, σp is the parameter associated with individual fare taste, λ is
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the airport-distance sensitivity of travelers, and αy is the marginal utility of income. The last

four parameters correspond to county fixed effects. Remember that the price coefficient has

three components: the parameter common to all travelers (αp), the marginal utility of income

(αy) times the household income (yi), and the component that captures the heterogeneity

that is not related to income (σpνpi ). αp and αy have the expected sign. αy is positive,

indicating that the higher the traveler’s income, the lower is the sensitivity to changes in

fares. The estimates associated with flight distance are also consistent with the previous

literature. The estimate linked to the distance from travelers’ location to the airport (λ)

is negative and significant. Hence, the farther are the airports, the more attractive is the

outside option (e.g. use another mode of transportation or not traveling). Travelers prefer

higher flight frequency because it is easier for them to find a flight that better matches their

preferred departure time. Moreover, they dislike delays and prefer direct flights. Once we

control for income and distance of travelers to the airports, SFO is preferred to OAK. This

result does not hold in the OLS and IV cases because these two models do not account for

travelers’ heterogeneity.

Table 10 reports the mean and standard deviation of the product own-price elasticities.

Columns 2 and 3 display the elasticities by airport and carrier. The column denoted by

“Both” analyzes elasticities without distinguishing the airport. We do not observe large dif-

ferences across airlines or airports. The mean own-elasticities in SFO are slightly higher than

in OAK. This result may be partly explained by a higher number of competitors operating in

markets using SFO. However, given the standard deviations of the estimates, differences are

not statistically significant. If we compare the elasticities with the ones provided by Berry

and Jia (2010), they are quite similar. Although our estimates are lower, they are of the

same order of magnitude. Note that while we focus on products using airports located in

the Bay Area, Berry and Jia (2010) study the whole U.S. domestic market.

Table 11 displays the frequency semi-elasticities of demand. For instance, if each carrier

increases by one the number of daily flights operating on each spoke at both airports, the

demand would increase on average 2.796%.

7.2. Supply estimates: As we pointed out in the model section, the weight of aircraft is

an indicator of passenger capacity and an important determinant of the total landing fees

that carriers pay. Table 12 reports estimates for the aircraft weight equation (10). Note

that we use spoke route data (Table 2) rather than product data (Table 1). That explains

why we use 315 observations instead of 12,790. We assume that the weight linearly depends

on a constant, total number of passengers, daily frequency, distance, carriers, and a dummy
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variable indicating if the aircraft lands at SFO or OAK. The most important estimates are

those linked to the demand (τ1) and the daily flight frequency (τ2). As expected, the τ1

estimate is positive and significant, which means that the higher is the demand, the larger

is the passenger capacity of the planes. Regarding τ2, the larger is the frequency of flights

operated by carriers on a spoke route, the smaller is the plane size. As Borenstein and Rosen

(2008) remark, the higher the flight distance, the bigger are the planes. Finally, we do not

observe significant differences between the size of aircraft operating at SFO and OAK.

Table 13 reports the average marginal cost per passenger-mile. The third column reports

the mean Lerner index, defined as the ratio between the markups and fares. There are

not significant differences across airlines.9 We observe that the average marginal cost per

passenger-mile for all products equals 6 cents, while the average Lerner index equals 36%.

Berry and Jia (2010) reported the same marginal cost per passenger-mile, but a much higher

Lerner Index (63%). Differences may be explained because Berry and Jia (2010) analyze the

whole U.S. market and we only focus on markets using the main airports in the Bay Area.

Table 14 presents estimates for the linear specification of marginal costs (13), which

includes a constant, carrier dummies, a SFO dummy, flight distance, the square of flight

distance, a dummy indicating if the connecting or destination airports are hubs of the oper-

ating carrier, and number of connections. The results are again consistent with Berry and

Jia (2010). Marginal costs increase nonlinearly with distance since an important fraction

of the fuel is consumed during landings and take-offs. A similar argument can be used to

explain the positive estimate for the number of connections. Ceteris paribus, marginal costs

are higher at SFO. Finally, the hub estimate is unexpected. As Brueckner and Spiller (1994)

point out, airlines use their hubs to take advantage of economies of traffic density. However,

our estimate for the hub coefficient is positive rather than having the expected negative sign.

We assume that the undelayed cost component (FCostrc) linearly depends on distance,

squared distance, carriers and airport dummies. Table 15 shows the parameter estimates

for equation (51). We tried several specifications, and in all of them βd is negative but not

significant. The distance and squared distance coefficients have the expected signs and they

are significant. We do not observe significant differences among carriers or airports of arrival.

To conclude this section, Table 16 presents the fitted values for the undelayed fixed

cost of operating a flight ( ˆFCostrc), that equals equation (14) without the error term. The

average fixed cost of operating a new flight is almost $10,562. Finally, we do observe that

the cost of operating flights at SFO are slightly higher than at OAK, but not significant.

9Standard errors are not reported, but they are relatively big. As a result, we cannot reject the hypothesis

that the difference between any two means is zero.
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8. Airline-Airport Agreements: Effects on Airline Behavior and

Congestion at Airports

This section analyzes the effects of the contractual relationship between carriers and

airports. Remember that charges are designed to let airports achieve financial self-sufficiency.

Hence, changes in the operating costs of airports affect landing fees and rental rates of termi-

nals. We first study how variations in expenditures at airports affect the behavior of carriers

and flight delays. In a second counterfactual exercise, we show that different methodologies

may induce airlines to behave differently. In particular, we look at the consequences of SFO

adopting the contract used by OAK in order to manage congestion.

8.1. Airport Operating Costs: We study how changes in the cost of airports affect charges

and their consequences on the strategy followed by airlines. Since delays depend on the daily

frequency of flights, the response of airlines will also affect airport congestion. We assume

that the new costs are attributable to the cost centers used to compute landing fees and

rental charges: the costs assigned to the Airfield Cost Center, the operating expenditures

(OEa) assigned to the Terminal Cost Center, and the costs (GCa) of the Groundside Cost

Center for a ∈ {oak, sfo}. As we previously pointed out, we assume that these terms are

exogenous.

The nature of such changes may be diverse, from minor repairs of the runway to more

complex projects such as a new drainage system or the construction of a new taxiway or

runway. However, our analysis assumes that changes in costs do not affect the capacity of

airports. For example, in the case of constructing a new runway, our model would be valid

until the new facility is operational.10

As we pointed out, OAK and SFO have different mechanisms to determine landing fees

and rental rates. Let EXCoak and EXCsfo denote the expenditure element used in the

computation of landing fees for OAK and SFO respectively (see (15) and (21)), then

EXCoak = ARCostoak(52)

EXCsfo = ARCostsfo +
1

2
[OEsfo +GCsfo](53)

Since ARCostoak and ARCostsfo are assumed to be exogenous, using these terms or just the

expenditures linked to these cost centers does not affect our analysis.

10Under certain conditions, the DoT let airports add a portion of the costs of airfield projects under

construction to the landing-fee rule. See DoT FR-73, No 135, July 14, 2008.
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Note that the optimal decisions of airlines are not affected by the cost component

included in the rental rate methodology. If we look at the fare and frequency first order

conditions (see (29) and (35)), they depend on the derivative of the rental rates and this

derivative does not include costs.

Figures 2 to 9 show how changes in EXCa for a ∈ {oak, sfo} affect the most relevant

variables of our model: landing fees, flight frequency, weight of aircraft and airport conges-

tion. We simultaneously solve for flight frequency using (51) and obtain the new equilibrium

in frequencies as a result of changes in the level of expenditure EXCa.
11 We repeat the pro-

cess for different values of EXCa and interpolate the results. We decided to keep demand

and fares fixed to reduce the computational burden. The effects of recomputing fares are

expected to be low, since the percentage of the marginal cost of a product attributable to

landing fees and rental of terminals is very small. Similarly, changes in total demand at OAK

and SFO are also expected to be modest, since the cross frequency elasticities of demand

between products using OAK and SFO are small. That means when the flight frequency of a

product changes, travelers still prefer using products at the airport where the most preferred

option is located rather than changing of airport or using the outside option.

Figures 2 and 3 display changes in landing fees as a function of SFO and OAK costs

respectively. The x-axis represents the variation in the expenditures (denoted as ∆EXCa

for a ∈ {oak, sfo}). For instance, a ∆EXCsfo equal to 5% indicates that the new cost at

SFO is 5% higher than the original one. Displayed on the y-axis is the landing fee as a result

of changes in expenditure. First, we observe that the landing fee curves have the expected

slope: the higher are ∆EXCoak and ∆EXCsfo the higher are the fees that airlines must pay.

We can also see that landing fees are slightly more sensitive to cost changes at SFO than at

OAK. For instance, if ∆EXCsfo = 20%, the SFO landing fee would increase by 44% (from

$3.213 to $4.631). On the other hand, if the cost of operating OAK increases by 20%, the

OAK landing fee would increase by 19% ($1.460 to $1.741).

If we look at the other variables of interest, an increase in landing fees is accompanied

by a decrease in the total number of flights arriving at the airports (Figures 4 and 5), an

increase in the size of aircraft (Figures 6 and 7), and a reduction in the level of congestion

(Figures 8 and 9). These effects are nonlinear and much stronger at SFO. For example, if

∆EXCsfo increases by 20%, the total number of daily flights reaching SFO decreases by

2.4% (from 620 daily flights to 605), the average weight of aircraft increases by 1.7% (from

147,312 to 149,816 pounds) and, as a consequence, the average delay of flights reaching SFO

11We use the Knitro package for Matlab to solve the system of non-linear simultaneous equations.
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decreases by 8.1% (from 25 minutes and 22 seconds to 23 minutes and 20 seconds). Similarly,

an increase in the costs of operating OAK by 20% (∆EXCoak = 20%), reduces the number

of daily flights by 0.7% (from 326 daily flights to 303), increases the average weight by 1.6%

(from 139,714 pounds to 141,949), and reduces congestion at OAK by 2.1% (from an average

flight delay of 18 minutes and 40 seconds to 18 minutes and 16 seconds).

Finally, increasing the operating cost in one airport barely affects the behavior of airlines

in the competing airport. However, the direction of the effects is the expected one. Imagine,

for example, that the costs of operating SFO increase. Under this scenario, some carriers

decide to increase the frequency of their flights at OAK in response to the decrease in the

number of operations at SFO. Similar effect is observed when OAK increases its operating

costs. However, the magnitude of these responses are so small that results are not reported.

8.2. Contract Design: One interesting exercise is to analyze the consequences of SFO

adopting the airport-airline contract applied by OAK. This decision could be driven by the

interest of the SFO managers in keeping the surplus from the Groundside Cost Center rather

than sharing them with airlines. It could also be explained as a measure to reduce congestion,

since the current methodology includes the net revenues from the Groundside Cost Center

that likely reduce the amount that airlines pay for the use of SFO infrastructure.12 The OAK

methodology, on the other hand, does not take these revenues into account when it computes

landing fees and rental charges. As a result, SFO would then not use the net revenues of the

Groundside Cost Center (GCostsfo) and a percentage of the net costs of the Terminal Cost

Center (TCostsfo) in the landing fee and rental charge equations (see (21) and (28)). That

is, the proposed contract is given by

fees∗sfo =
ARCostsfo
TWeight∗sfo

(54)

and

RC∗c,sfo = TCost∗sfo × Usagec,sfo = (OEsfo −OR∗sfo)× Usagec,sfo(55)

where fees∗sfo and RC∗c,sfo are the new fees and rental charges as a result of the new rule.

Similarly, TWeight∗sfo and OR∗sfo are equal to the new total weight and terminal operating

revenues. In this scenario, ARCostsfo is the only expenditure taken into account to compute

the landing fee.

12Remember that the Groundside Cost Center includes the usually highly profitable vehicle parking and

ground transportation vehicle activities.
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We use the first order conditions with respect to frequencies (51), substituting the orig-

inal landing fees and rental rates with the new charge scheme ((54) and (55)), to recompute

the new equilibrium in flight frequencies resulting from the new contract. If we look at the

optimality conditions, we do not need RC∗c,sfo but do need its derivative. This derivative is

known because it only depends on the average operating revenue per traveler (ψterminal,sfo)

and the derivative of market shares with respect to frequencies. The problem is that the

cost of operating the SFO airfield (ARCostsfo) is unknown. We have data about the landing

fee and the total weight of aircraft arriving at SFO, as well as the terminal and groundside

revenues generated at the airport. With this information we can compute the total expendi-

tures (EXCsfo) used to determine landing fees. If we look at (21), the landing fee rule can

be rewritten as follows:

feessfo × TWeightsfo +
1

2
[ORsfo +GRevsfo] = ARCostsfo +

1

2
[OEsfo +GCsfo]︸ ︷︷ ︸

EXCsfo

(56)

As we previously noted, the LHS in (56) is observed. Consequently, the total expenditure

(EXCsfo) is also known. However, we do not have information about the expenditure com-

ponents: net costs of the Airfield Cost Center (ARCostsfo), terminal operating expenditure

(OEsfo), and groundside operation costs (GCsfo).
13 The only thing we know about them is

the total value for EXCsfo. Hence, the term ARCostsfo is not identified.

In this section, we simulate for different values of ARCostsfo the new equilibrium in

landing fees, frequencies, aircraft weight, and congestion using the new charge scheme. The

results of the counterfactual exercise are displayed in Figures 10, 11, 12, and 13. The x-axis

in the figures represents the percentage in the expenditure term attributable to ARCostsfo.

For instance, a value equal to 60% indicates that sixty percent of the cost component

(EXCsfo) corresponds to ARCostsfo. Obviously, the figures are bounded above for a value of

ARCostsfo equal to 100% of EXCsfo, since the terms OEsfo and GCsfo are strictly positive.

Figure 10 shows the different values of landing fees for hypothetical ARCostsfo percent-

ages. As expected, the higher is the exogenous component which remains in the landing fee

rule, the higher is the fee. For instance, if SFO implements the contract used by OAK and

the ARCostsfo is equal to 80% of the original expenditures, then the landing fee would be

13While the “Annual Operating Budget for SFO” and financial details that the airport reports to the

FAA clearly state the revenues attributable to each cost center, the cost centers expenditures are not clear.

For instance, the cost concept “salaries” appearing in the SFO balance accounts for personnel working at

the terminal, airfield, and groundside. However, we do not observe which percentage belongs to each cost

center.
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around $6, much higher than the original landing fee ($3.213). ARCostsfo should be equal

to 39% of the original costs to have the same landing fee as under the old contract.

Similarly, if changing the methodology reduces the level of expenditure used to compute

the landing fee by 20% (ARCostsfo corresponds to 80% of EXCsfo), total frequency would

decrease by almost 4% (from 620 daily flights to 595) (see Figure 11), and the average size

of airplanes would increase by 1.7% (from 140,289 pounds to 142,674) (see Figure 12). That

would reduce congestion by 12% (from an average flight delay of 25 minutes and 22 seconds

to 22 minutes and 19 seconds) (see Figure 13). Again, both contracts would lead to the

same level of congestion, aircraft size, and flight frequency if ARCostsfo is equal to 39% of

the original expenditures.

Given the fee scheme applied by SFO and the proposed contract, we derive the following

inequality to analyze the effectiveness of the new agreement as a tool to reduce congestion:

ARCostsfo > 0.39×
[
ARCostsfo +

1

2
[OEsfo +GCsfo]

]
︸ ︷︷ ︸

EXCsfo

(57)

where the LHS in (57) corresponds to the proposed expenditure term used in the new land-

ing fee scheme (54), and the RHS displays the original costs (EXCsfo) multiplied by the

previously discussed factor 0.39.

We can conclude that if the inequality in (57) holds (see Figure 13), the new rule would

be an effective tool to reduce congestion. Otherwise, the landing fee would be lower than

the original one, leading to an increase in the number of operations and higher congestion.

9. Conclusions

Using data from the Metropolitan Oakland International Airport (OAK) and San Fran-

cisco International Airport (SFO), we analyze the decisions of carriers and travelers taking

into account the contractual agreement between airports and airlines. This contract sets the

fees that carriers pay for landing, the rental rate for the terminal space that they occupy, as

well as the methodology to determine these charges. Airlines consider these charges and how

they are determined when they decide ticket prices and the frequency of their flights. Since

OAK and SFO airports have different charge rules, the effects of changes in the terms of the

contracts are also different. At both airports, an increase in landing fees is accompanied by

a decrease in the total number of flights arriving at the airports, an increase in the size of

aircraft, and a reduction in the level of congestion.
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While aircraft weight-based methodologies for determining landing fees, as used in OAK

and SFO, are not appropriate to reduce congestion at airports with big differences between

the number of operations during peak and off-peak hours, they can be useful at airports

continuously operating at the maximum capacity. The reason is that weight-based landing

fees only depend on the weight of aircraft without taking into account at what time of the day

the planes land. In our application, we show that under certain conditions, implementing at

SFO the contract used by OAK can reduce congestion. This counterfactual exercise shows

that different methodologies may induce airlines to behave differently. Further research could

be addressed to study the optimal design of contracts given the preferences of travelers,

strategy of carriers, and airport regulations.

The paper also introduces methodological innovations to capture characteristics of the

airline industry: first, we let charges being endogenously determined by the behavior of

travelers and carriers. Second, while in our analysis carriers face two decision variables

(fares and frequency of flights), most of the previous literature focuses on a single decision

variable (fares). Third, our rich model specification captures two sources of correlation

across markets. The first source is the possibility that passengers from different markets

share aircraft reaching the Bay Area. The second source of dependence is congestion at

airports. Changes in the frequency of one product impact the level of congestion. Thus,

products using the same airport will be affected even if they belong to different markets.

We acknowledge some limitations in our analysis. Our application only includes data

from the third quarter of 2006, while landing fees and rental rates methodologies use yearly

data. Including the other quarters will lessen the impact of changes in the cost of operating

airports since they will be distributed among more flights. The lack of data also prevents us

from including cargo flights and general aviation operations. The direction of the effects of

adding this information is similar to the case of using yearly data. Finally, we did not use

data from international and connecting passengers at OAK and SFO. Including information

about these types of passengers would complicate the model since their preferences are very

different from passengers with the Bay Area as final destination. In that case, the reaction

of airlines to changes in the “use and lease agreement” would depend on how valuable the

domestic travelers with SFO or OAK as final destinations are compared to international or

connecting passengers at these airports.
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Figure 1. San Francisco Bay
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Table 1. Summary Statistics of Products (3Q. 2006)

OAK SFO Both
Mean Sd Mean Sd Mean Sd

Fare (p) ($100) 3.81 1.48 4.26 2.14 4.11 1.96
Nb Passengers 305.88 2,634.33 171.84 1,234.18 214.37 1,801.45
Direct Flight 0.03 0.16 0.02 0.15 0.02 0.15

Daily Frequency (f̂) 4.56 2.39 4.89 2.11 4.79 2.21
Distance (1,000 miles) 4.23 1.33 4.64 1.15 4.51 1.22
AA 0.07 0.26 0.16 0.36 0.13 0.34
CO 0.04 0.20 0.05 0.22 0.05 0.22
DL 0.12 0.32 0.13 0.34 0.13 0.34
NW - - 0.11 0.31 0.07 0.26
UA 0.20 0.40 0.35 0.48 0.31 0.46
US 0.12 0.32 0.15 0.36 0.14 0.35
WN 0.37 0.48 - - 0.12 0.32
Others 0.07 0.25 0.05 0.21 0.05 0.22
Slot Constraints 0.18 0.38 0.28 0.45 0.25 0.43

Delay (D̂) (minutes) 22.48 2.56 25.11 2.14 24.28 2.59
Nb Products 4,058 - 8,732 - 12,790 -

Table 2. Market Average Statistics (3Q.2006)

OAK SFO Both
Mean Sd Mean Sd Mean Sd

Nb Products 9.10 12.89 19.58 30.15 28.68 40.88
Nb Carriers 2.56 1.77 3.58 2.23 4.24 2.30
Nb Markets 405 - 443 - 446 -

Table 3. Supply Statistics: Spoke-Carrier in the Bay Area (3Q.2006)

OAK SFO Both
Mean Sd Mean Sd Mean Sd

Daily Frequency 2.77 3.36 3.12 2.57 2.99 2.89
Aircraft MGLW (103 pounds) 139.71 24.84 147.31 66.29 144.48 54.73
Total Daily Capacity (103 pounds) 367.08 403.99 437.07 452.70 411.02 435.87
Nb Spokes 72.00 - 87.00 - 103.00 -
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Table 4. Supply Statistics: Spoke-Routes Arriving at OAK (3Q.2006)

Daily Freq MGLW Daily Capacity Spokes
(103 pounds) (103 pounds)

Mean Sd Mean Sd Mean Sd
OAK 2.77 3.36 139.71 24.84 367.08 403.99 72
AA 3.85 2.27 137.47 25.23 525.26 317.95 6
CO 2.64 0.62 115.42 60.44 289.07 138.63 3
DL 1.54 0.54 166.97 30.34 257.11 105.67 12
NW - - - - - - -
UA 1.78 1.31 159.43 23.90 280.19 191.51 14
US 2.00 1.09 147.77 24.02 281.44 131.94 13
WN 3.63 4.96 127.58 9.54 446.03 587.68 45
Others 2.42 1.96 133.64 17.15 319.50 253.51 23

Table 5. Supply Statistics: Spoke-Routes Arriving at SFO (3Q.2006)

Daily Freq MGLW Daily Capacity Spokes
(103 pounds) (103 pounds)

Mean Sd Mean Sd Mean Sd
SFO 3.12 2.57 147.31 66.29 437.07 452.70 87
AA 2.77 2.25 151.38 58.05 435.97 409.83 24
CO 2.80 2.11 142.71 35.11 420.40 329.11 9
DL 1.92 1.28 192.04 67.38 359.26 316.56 28
NW 2.53 1.89 155.93 46.23 380.20 265.10 17
UA 3.79 3.29 130.37 76.75 485.11 613.80 61
US 3.63 2.40 128.80 58.01 449.83 411.07 35
WN - - - - - - -
Others 2.93 2.22 156.33 53.49 434.91 370.45 25

Table 6. Financial Information for year 2006

OAK SFO
Landing Fees ($) per 103 pounds of MGLW 1.460 3.213
Year Enplaned Pax (103) 14,639 33,148
Operating Revenues (OR) (103$) 17,323 125,656
Groundside Revenues (GRev) (103$) 37,769 57,686
ψterminal,a 0.0237 0.0758
ψground,a 0.0542 0.0473
Total Weight (TWeight) (106 pounds) 8,866 20,095
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Table 9. Demand Estimates

OLS IV RCM

Intercept -10.557** -10.010** -5.861**
(0.160) (0.225) (0.363)

Fare (αp) -0.056** -0.581** -1.301**
(0.006) (0.059) (0.087)

Distance (1,000 miles) 0.384** 0.876** 0.997**

(0.045) (0.073) (0.147)

Distance Squared -0.078** -0.120** -0.128**

(0.006) (0.008) (0.019)

Frequency (αf ) 0.021** 0.113** 0.063**

(0.006) (0.008) (0.009)

Direct 4.071** 4.084** 4.137**
(0.075) (0.098) (0.110)

SFO -0.089** -0.058 0.199**

(0.029) (0.039) (0.043)

CO -0.091 0.375** 0.396**

(0.058) (0.087) (0.100)

DL -0.042 0.004 -0.145

(0.044) (0.057) (0.067)

NW -0.248** -0.238** -0.317**
(0.051) (0.067) (0.071)

UA -0.258** 0.170** 0.326**
(0.036) (0.065) (0.080)

US -0.371** -0.090 -0.038

(0.043) (0.059) (0.070)

WN -0.461** -0.626** -0.731**
(0.052) (0.068) (0.073)

Others 0.368** 0.486** 0.510**
(0.056) (0.074) (0.084)

Slots -0.380** -0.327** -0.360**
(0.029) (0.038) (0.043)

Delay (αd) -0.002 -0.017 -0.144
(0.007) (0.009) (0.012)

Random Constant (σ0) - - -0.137

(-) (-) (0.105)

Random Price (σp) - - -0.059**

(-) (-) (0.005)

Distance to Airports (λ) - - -1.042**
(-) (-) (0.002)

Random Price-Income (αy) - - 0.087**
(-) (-) (0.001)

Random Frequency (σf ) - - 0.125**

(-) (-) (0.002)

Random Delay (σd) - - -0.081**

(-) (-) (0.001)

Sfo-Mateo - - 1.461**

(-) (-) (0.009)

Sta Clara - - 0.413**
(-) (-) (0.005)

Alameda-Costa - - 2.213**

(-) (-) (0.068)

Sonoma-Marin - - 3.125**

(-) (-) (0.008)

Nb Observations 12,790 12,790 12,790

J-Statistic - - 27.9

Sargan Statistic - 28.4 -

R2 0.311 - -

Degrees of Freedom - 4 31

χ2 Critical Value (5%) - 9.49 44.99

** Significant at the 5 percent level.
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Table 10. Price Elasticities Estimates

OAK SFO Both
All Carriers -3.00 -3.12 -3.08

(0.79) (0.94) (0.90)
AA -2.95 -3.06 -3.04

(0.76) (0.86) (0.84)
CO -3.21 -3.36 -3.32

(0.79) (0.88) (0.86)
DL -2.81 -2.79 -2.79

(0.95) (0.99) (0.98)
NW - -2.90 -2.90

- (0.76) (0.76)
UA -3.29 -3.34 -3.33

(0.87) (0.99) (0.97)
US -3.09 -3.14 -3.12

(0.73) (0.86) (0.83)
WN -2.83 - -2.83

(0.60) - (0.60)
Others -3.19 -2.82 -2.97

(0.89) (0.85) (0.89)

Table 11. Frequency Semi-Elasticities of Demand

OAK SFO Both
Mean 2.805 2.834 2.796
Median 2.665 2.687 2.647
Std 1.072 1.198 1.306
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Table 12. Weight Estimates (TSLS)

Weight (103 pounds) Estimate
Intercept 123.990**

(11.527)
Daily Pax (TDD) (τ1) 0.138**

(0.018)
Daily Frequency (τ2) -14.445**

(1.924)
Distance (dist) (1,000 miles) 28.223**

(3.212)
CO -16.969

(14.939)
DL 34.3325**

(11.960)
NW 27.925

(14.782)
UA 7.332

(11.090)
US -10.379

(14.749)
WN -23.169

(12.686)
Other -24.089**

(10.726)
SFO (Isfo) -5.413

(5.584)
Nb Observations 315
Sargan Statistic 4.187
Degrees of Freedom 3
χ2 Critical Value (5%) 7.814

** Significant at the 5 percent level.

Table 13. Average Marginal Costs and Lerner Index

mc ($) per pax-mile Lerner Index
All Flights 0.065 0.363
OAK 0.065 0.366
SFO 0.066 0.362
Direct Flights 0.096 0.450
Connecting Flights 0.065 0.361
AA 0.059 0.367
CO 0.065 0.327
DL 0.054 0.398
NW 0.052 0.375
UA 0.079 0.346
US 0.063 0.349
WN 0.063 0.381
Others 0.068 0.380
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Table 14. Marginal Cost Estimates

mc ($100) Estimate
Intercept 0.297**

(0.108)
SFO 0.078**

(0.033)
Distance (1,000 miles) 0.659**

(0.050)
Distance2 -0.060**

(0.006)
Hub 0.237**

(0.028)
Nb Connections 0.143**

(0.019)
CO 0.783**

(0.070)
DL -0.213**

(0.049)
NW -0.018

(0.063)
UA 0.449**

(0.045)
US 0.242**

(0.048)
WN -0.029

(0.057)
Others 0.091

(0.064)
Nb Observations 12,790

** Significant at the 5 percent level.
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Table 15. Total Cost Frequency Estimates

$100 Estimate
Intercept 19.28**

(4.02)
βd -0.37

(0.24)
Distance (1,000 miles) 4.55**

(1.63)
Distance2 -0.42

(0.27)
CO 1.91

(3.30)
DL -3.35

(2.30)
NW -1.78

(2.82)
UA -2.28

(3.17)
US -0.61

(2.37)
WN -1.02

(4.52)
Others -0.36

(2.33)
SFO 2.59

(2.62)
Nb Observations 315
R2 0.216

** Significant at the 5 percent level.

Table 16. Undelayed Cost Frequency Estimates ( ˆFCost)

ˆFCost ($) OAK SFO Both
Mean 8,837 11,585 10,562
Median 7,070 10,026 9,570
Std 3,585 3,970 4,050
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Figure 2. Landing Fees SFO ($)
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Figure 3. Landing Fees OAK ($)
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Figure 4. ∆ Total Daily Flights SFO (%)
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Figure 5. ∆ Total Daily Flights OAK (%)
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Figure 6. ∆ Aircraft Average Weight SFO (%)
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Figure 7. ∆ Aircraft Average Weight OAK (%)
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Figure 8. ∆ Average Delay SFO (%)
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Figure 9. ∆ Average Delay OAK (%)
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Figure 10. Landing Fees SFO ($) (OAK Methodology)
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Figure 11. ∆ Total Daily Flights SFO (%) (OAK Methodology)
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Figure 12. ∆ Aircraft Average Weight SFO (%) (OAK Methodology)
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Figure 13. ∆ Average Delay SFO (%) (OAK Methodology)
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10. Appendix

10.1. GMM discussion: The GMM estimation procedure follows the nested fixed point
approach suggested by Petrin (2002). Petrin extended the algorithm proposed by Berry,
Levinsohn and Pakes (1995) (BLP) by combining data from different sources.

The model is estimated using a nonlinear GMM method. Three sets of moment con-
ditions are used: one derived from the difference between the observed market shares and
predicted market shares and the marginal cost moments (we call them BLP moments), and
other moment conditions that add extra demand information using the 2006 MTC Survey.

10.1.1. BLP Set of Moments: First, as in BLP we want to match the predicted market shares
sjt(δ(θ), ·; θ) with those observed in the data sjt:

sjt(δ(θ), ·; θ) = sjt for j = {0, · · · , Jt} and t = {1, · · · , T}(58)

Berry (1994) showed that under certain conditions, the previous equality holds for a
unique value of the mean utility level (δjt). This property is useful because it will allow us
to solve numerically for δjt by using a contraction mapping procedure. This is equivalent to
computing the series

δh+1
jt = δhjt + ln(sjt)− ln(sjt(δ(θ), ·; θ))(59)

for j = {1, · · · , Jt}, t = {1, · · · , T}, and h = {0, · · · , H}. Our approximation for δjt will be
δHjt such that ||δHjt − δH−1

jt || is smaller than some tolerance (in our application 10−14).
As usual in this type of model, we are not able to calculate analytically the integral

associated with the market shares sjt(δ(θ), ·; θ). So we simulate the market shares by taking g
draws from the approximated distributions of distance to the airport (PL), household income
(PY ) and the distribution of unobservables (Pν). Hence, the simulated market shares are
given by

sjt(δ(θ), ·; θ) =
1

g

g∑
i=1

exp [δjt + µijt]

1 +
∑

m∈Jt exp [δmt + µimt]
(60)

For the observable individual characteristics (distance and income) we use g random
draws from the empirical distribution.14 For the unobserved taste of travelers (ν’s) we use
Halton sequences rather than Monte Carlo simulations. This approach allows us to obtain
a better approximation to the normal and lognormal distributions (Train (2009)).

From the mean utility equation (1) and given δjt, θ and product characteristics, we
can derive the moment condition related to the unobserved-to-researcher characteristics of
product j in market t (ξjt). That is

ξjt = δjt − α0pjt − αf f̂jt − αdD̂jt − xjtβ(61)

Using appropriate instruments (zd) to control for price and frequency endogeneity, our
moment condition can be written as

14In our application g=1200.
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E[zdjtξjt] = 0(62)

10.1.2. Marginal Cost Moment: The marginal cost moments are derived from (13) and equal

E[zmjtω
m
jt ] = 0(63)

where ωmjt is the residual of the marginal cost equation and zmjt are cost instruments.

10.1.3. Additional Demand Moments: Following Petrin (2002), we extend the BLP model
by adding moment conditions constructed using the 2006 MTC Airline Survey Data. Such
survey data give us interesting demographic information about travelers conditional on the
use of one of the two airports in the Bay Area. In particular, we use information about their
distance to the airports and their household income.

Basically we construct moments that match the predicted average consumer demograph-
ics obtained from the BLP moments with the average consumer demographic characteristics
from the MTC survey. In particular, the extra moment conditions will match the probability
that a traveler i using one of the airports (a) comes from/goes to a specific county (C) and
belongs to a income group (Y). That is

ηc(C, a) = E [Li ∈ C|{i uses airport a}](64)

ηy(Y , a) = E [yi ∈ Y|{i uses airport a}](65)

where

C ∈ {S.Francisco-S.Mateo, Sta Clara, Alameda-C.Costa, Solano-Napa, Sonoma-Marin}

Y ∈ {<$25k, $25k-50k, $50k-75k, $75k-100k, $100k-150k, $150k-200k,>$200k}

a ∈ {OAK,SFO}
where Li and yi are the county of origin/destination and household income group of individual
i. ηc(C, a) and ηy(Y , a) are the probabilities from the 2006 MTC survey (Tables (7) and (8)).
The RHS expressions in (64) and (65) are the expected value predicted by our model and
computed using the simulated market shares in (60). This extra condition applies for all
income groups, counties and airports.

Since the probabilities ηc(C, a) and ηy(Y , a) conditional on each airport must sum to
one, we do not include one of the options in the moment conditions. In particular, we do not
include the county couple Solano-Napa nor household group with income less than $25,000.

As we will see later, to minimize the GMM objective function, it is necessary to use
the sample analogs of the previous moments. Since the MTC survey gives information
conditional on using one of the airports, we will need to apply the definition of conditional
probability to match the predicted probabilities with the MTC survey probabilities. Hence
the sample analog of the additional information moments can be written as
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ηc(C, a)−

g∑
i=1

∑
rjt∈Ra

sijt(δ(θ), ·; θ)Mt1I{Li ∈ C}

g∑
i=1

∑
rjt∈Ra

sijt(δ(θ), ·; θ)Mt

(66)

ηy(Y , a)−

g∑
i=1

∑
rjt∈Ra

sijt(δ(θ), ·; θ)Mt1I{yi ∈ Y}

g∑
i=1

∑
rjt∈Ra

sijt(δ(θ), ·; θ)Mt

(67)

where the second term of the expressions corresponds to the model predicted probabilities
that a traveler i coming from county C and belonging to the household income group Y
uses airport a respectively. 1I{·} is a indicator function equal to one if the condition inside
brackets holds and zero otherwise.

10.1.4. GMM Estimation: Let ϑ =

[
θ
γm

]
denote the set of parameters to be estimated

using GMM (see equations (1) and (13)). Our optimal 2-step GMM estimators will be

ϑ̂ = argmin
ϑ
Ĝ(ϑ)′Φ−1Ĝ(ϑ)(68)

where Ĝ(ϑ) is the vector of sample analogs of the moment conditions noted above, and Φ is
a consistent estimate of the variance-covariance matrix of the moments using the parameter
estimates of the first step.

Detailed practical information about how to estimate this type of model can be found in
Nevo (2000b). The algorithm is an iterative procedure characterized by first solving the con-

traction mapping (given initial values for θ̇ and γ̇m, solve for δ(θ̇)) and afterwards the GMM

optimization problem (given δ(θ̇), solve for θ̈ and γ̈m) and iterate again until convergence is
reached. As suggested by Dube, Fox and Su (2012) we use tight tolerances: 1e−14 for the
contraction and 1e−7 for the GMM function. We use the Knitro optimization package for
Matlab and its interior/direct algorithm to solve the GMM minimization problem. In order
to improve the performance of the minimization algorithm, we provide analytical gradients
of the moment conditions. We repeat the algorithm for 50 different random starting points
and choose the solution with the lowest objective function value.

As we previously pointed out, the product-specific costs (mjt) and marginal costs (mcjt)
are unobserved by the econometrician. The GMM procedure also gives us estimates for both
variables. They are part of the iteration process. Given an initial value for θ̇, we can use
the F.O.C. with respect to fares (29) and estimates from the weight equation (10) to obtain

ṁjt. The procedure is relatively simple, since once we use θ̇ and estimates for the weight of
aircraft equation, the only unknown in the optimality condition for fares is ṁjt. Knowing
the product-specific costs, marginal costs (ṁcjt) follow from computing the derivative of the
variable costs with respect to the demand for product jt (12). New values of estimates for
mjt and mcjt are obtained in each iteration until convergence is reached.

Finally, if we rely on the asymptotic properties of the estimates, then
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J1/2(ϑ̂− ϑ0) ∼ N (0, (Γ′Φ−1Γ)−1)(69)

where Γ = E
[
∂Ĝ(ϑ0)
∂ϑ

]
. We report standard errors using consistent estimates of Γ and Φ.

10.2. Description of Data Sources:

10.2.1. Choice and Flight Characteristics Sources:

• Airline Origin and Destination Survey (DB1B): a 10 % sample of all passengers trav-
elling within the US, with detailed ticket information such as the operating and tick-
eting carrier of each coupon, the airports in which the passenger made a connection,
if any, and the fare.
• DOT 100 database: has information on frequency of flights, total number of pas-

sengers and type of aircraft for all segments in the US. Given the aircraft type, we
check the aircraft technical specifications in the manufacturers’ website to obtain the
maximum gross landing weight (MGLW) of the plane.
• Airline On-Time Performance Data: provides information about on-time and delay

information for non-stop domestic flights by major air carriers.

10.2.2. Airport Financial Reports: We use financial details that airports report to the Federal
Aviation Administration (FAA) to obtain information about the airfields and terminals’
operating revenues. Such information is useful when we introduce landing fees and terminal
rental rules in our model. The values of the landing fees and the methodology to determine
landing fees and rental charges are obtained from the airports’ board meeting proceedings.

10.2.3. American Community Survey (ACS):. The ACS is a household survey developed by
the US Census Bureau to replace the long form of the decennial census program. The ACS
is a large demographic survey collected throughout the year using mailed questionnaires,
telephone interviews, and visits from Census Bureau field representatives to about 3 million
household addresses annually. Starting in 2005, the ACS produced social, housing, and
economic characteristics for demographic groups in areas with populations of 65,000 or more.
It also produced estimates for smaller geographic areas, including census tracts and block
groups. We use this database to construct the distribution of the household income and
distance to the airports.

10.2.4. 2006 Airline Passenger Survey: This survey gives detailed information about travel-
ers using San Francisco International Airport (SFO) and Metropolitan Oakland International
Airport (OAK). The primary purpose of the survey is not to analyze behavior of travelers
with respect to the choice of carrier products but to permit the analysis of alternative poli-
cies with regard to airport access. The survey contains: household income, location of the
traveler in the Bay Area, destination, airport of origin/destination, carrier, transportation
access to the airport. The survey does not provide information about prices, nor the chosen
itinerary. However, its rich demographic information can complement the DB1B and ACS
databases. We will use this survey to construct the distributions of household income and
distance conditional on the airport travelers use.
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10.3. Data Construction: We restrict our attention to data from the third quarter of 2006.
Following Urdanoz and Sampaio (2011), we only consider products with the following char-
acteristics: (1) round trip itineraries starting and ending at the same airport, thus excluding
one-way trips and “open jaws”; (2) products with up to three coupons per direction; (3)
with at most one ticketing company; (4) with at most two operating carriers; (5) that are
not operated by a foreign carrier; (6) that do not involve a coupon operated by an unknown
carrier; (7) that do not involve a ground trip; (8) that do not have an airport coded as NYC
since we cannot identify which of the 4 airports in New York Metropolitan area was used
and finally (9) with fares between $50 and $3000.

We follow the approach proposed by Mayer and Sinai (2003) to construct the delay
variable. Rather than defining flight delays as the percentage of flights arriving more than 15
minutes of scheduled arrival time, we use the difference between actual time and the minimum
feasible travel time. Then we define the average delay at each airport as the average of the
aforementioned difference for all flights arriving at the airport. Such an approach avoids
the use of scheduled arrival times that may be subject to airline manipulation (padding)
to increase their on-time performance. To obtain the average delay of each product, we
compute the mean delay of each connecting airport.15

As we previously noted, total landing fees paid by each carrier depend on the weight
of aircraft used on the trip segment arriving in the Bay Area. However, carriers may use
several types of airplanes for the same segment. To determine the value of the maximum
gross landing weight (MGLW)(the variable weightrc of our model), we compute the average
MGLW of the different aircraft weighted by the total number of operations they performed
in the quarter.

Regarding the 2006 MTC data set, we restrict our attention to observations where
income and travelers’ location information is provided. Then we construct the empirical
distribution of those two variables conditional on each of the airports in the Bay Area.

We use the ACS survey to obtain demographic information about income and traveler
locations. We do not have the exact address of respondents in the ACS survey, but only
the area where they come from. The ACS classifies areas according to census tracts. In the
particular case of the Bay Area, the ACS partitions the area into 1099 zones. We compute
the distance from the traveler’s location to airports as the Euclidean distance between the
airports and the centroid of the census tract where the traveler comes from.16 Finally, our
model uses county fixed effects, so we group census tracts according to their respective
county. We create the variable “traveler income (yi)” by taking random draws of the income
distributions provided by the ACS for each of the metropolitan statistical areas where the
airports of origin are located.

As noted above, we use products from the 3rd quarter of 2006 to estimate the model.
However, landing fees and rental charges are computed using the fiscal year.17 Hence, to

15Other alternatives may be considered, such as the difference between the scheduled and the actual flight
durations.

16Alternative measures can be used. For instance rather than using the Euclidean distance we can
compute the topographic distance taking into account roads and access to airports. Another option would
be to compute the time necessary to reach the airport

17The fiscal years for OAK and SFO start in July 1 and finish June 30. For simplicity we assume that
the fiscal year and the natural year are the same.
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construct some variables, we use yearly data rather than just one quarter. First, using the
T-100 data set and manufactures’s website we construct the total weight of aircraft landing
at airports during 2006 (TWeighta with a ∈ {oak, sfo}), which is used as denominator in
the landing fees formula (see (15) and (21)). Similarly, we use the total number of enplaned
passengers, the Groundside Cost Center Revenues (GRevsfo), and the Terminal Cost Cen-
ter revenues (ORa for a ∈ {oak, sfo}) for all of 2006 to determine the parameter values
associated with the terminal (ψterminal,a for a ∈ {oak, sfo}) and the groundside revenues
(ψground,sfo).

We do not have information about the terminal areas leased by airlines. Instead, we
use the number of operations performed at each airport during 2006 as a proxy for the usage
of terminals (Usagec,a).
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