Adjustment of Bidding Strategies after a Switch to First-Price Rules

Miguel Alcobendas (Yahoo)
Robert Zeithammer (UCLA)
EC'22
07/12/2022

Display Ads at Yahoo: Switch in Pricing-Rule

- In 2019, Yahoo display inventory switched from second to first-price Obvious prediction: bids should fall after the switch

1. Did bidders adjust bids down/sufficiently?
2. How long did it take them to adjust?

Display Ads at Yahoo: Methodology

- Idea: bound valuations (U) from observed first-price bids, and compare with valuations (i.e. bids) before switch keeping everything possible fixed

- For each bid within a fixed \{DSP,creative\}:

1. Calculate lower bound on $V_{\text {implied by observed bids \& local }}$ competition
2. Compare U before to lower bound on U after (should be " "")

Display Ads at Yahoo：Summary

－Idea：bound valuations (U) from observed first－price bids，and compare with valuations（i．e．bids）before switch keeping everything possible fixed

田 自 昆
 settings
 CHECK FOR OFFERS

oowt tive life wirnourit

Learn More
Temma Appity

1．Did bidders adjust bids down sufficiently？NO，many of them did not adjust enough，some did not adjust at all
2．How long did it take them to adjust？Months，not weeks or days

Data

- In 2019, Yahoo display inventory switched from second-price to first-price
- Focus of data collection: how does the same bidder bid on showing the same creative in the same location on the same website before and after the switch?
- Sample of bids in auctions between 1 month before the switch and 3 months after
- 19 million auctions by 4 bidders (DSPs) on 11 total long-running creatives
- Key data: both own bid and highest competing bid
- Disclaimer: our selection of long-running creatives is not necessarily representative of the average creative campaign (Not a characterization of the entire market)

Method for assessing bid shading by one bidder

Before switch: bids $(b)=$ valuations (v)
After switch: bidders maximize expected surplus:

$$
\max _{b} \underbrace{G(b \mid v)}_{\operatorname{Pr}(\text { competing bid }<b \mid v)}(v-b)
$$

- No market pure-strategy equilibrium (market in transition)
- Asymmetry of bidders
- Affiliated private value (APV)
- $G(b \mid v)$ Estimate using local competition
Calculate lower bound on V from additional bid shade S :

Display Ads at Yahoo

```
yahoodmail
```

a
 Home

- Focus on ads displayed in one property (e.g. Yahoo Mail)
- One location (e.g. upper right)
- One ad size (e.g. 300×250)
- Fix DSP (e.g. AppNexus)
- Fix Creative (e.g. AMEX)

Bids Snapshot
(March 12th, 2019, few weeks after the switch)

- 10,757 sample bids
- 4.5% winning probability

Defining "local" competition

Question:

- How much does the bidder value the impression when bidding 50¢ @ 5PM on 3/12/2019?

Observations:

- $G(b \mid v)$: The highest competing bids against "near" bids teach us about the competition faced by the bidder
- 476 bids "near" 50¢ @ 5PM on 3/12
- 3.4% winning probability

Competition for a 50 ¢ bid @ 5PM on 3/12

$$
\max _{b}^{\operatorname{Pr}(\text { competing bid }<b \mid v)} \underset{G(b \mid v)}{G-b)}
$$

Not bidding less than $\mathbf{5 0}$ ¢ given competition bounds U :

- Example 1: not bidding 40¢

$$
\underbrace{0.06}_{G(50)}(v-50)>\underbrace{0.02}_{G(40)}(v-40) \Leftrightarrow v>55
$$

- Example 2: not bidding 45¢
$\underbrace{0.06}_{G(50)}(v-50)>\underbrace{0.04}_{G(45)}(v-45) \Leftrightarrow v>60$
\quad... so $V>60 ¢$ here

Lower Bound Estimator on Valuation (LBV)

- Lower bound on V from additional bid shade S, sub-optimal by construction:

$$
\begin{aligned}
& \underbrace{G(b \mid v)(v-b)}_{\text {Best expected surplus }}>\underbrace{G(b-s \mid v)(v-b+s)}_{\substack{\text { Sub-optimal expected surplus } \\
\mathbb{N}}} \\
& \frac{v}{b}>1+\frac{s G(b-s \mid v)}{b[G(b \mid v)-G(b-s \mid v)]} \equiv \operatorname{stretch}(s)
\end{aligned}
$$

- Bidders prefers submitted bid to any other lower bid
\rightarrow try all feasible S, apply maximum

$$
v>b \max _{0.01<s<b-R} \operatorname{stretch}(s) \equiv L B V(b)
$$

Method for inferring LBV from 1PSB bid

For each bid within a fixed \{DSP,Creative $\}$:

1. Construct a non-parametric local estimate of G
2. Calculate the lower bound on valuation V implied by G and observed bid b
3. Compare U before switch to lower bound on U after switch (should be ">")

Recall: bids on 3 selected creatives raised questions

LBV on 3 selected creatives over time ...

- B1 does not shade until the end of data. Enough then? Maybe
- D1 seems to shade enough
- C2 shades bids, but not enough (as if valuations \uparrow-30\%)

Conclusion

- Did the bidders adjust bids down sufficiently?
- No,
- Lower bound on post-switch valuations exceeds the pre-switch valuations in 8 of the 11 analyzed creatives
- On average, bidders bid as if the switch increased their valuation by at least 30%
- How long did it take them to adjust?
- On average, longer than 3 months (out sample period), if at all
- Revenue Measures (e.g. CPM) require to disentangle insufficient shading by the focal bidder from changes in local competition
- Disclaimer: bidding strategies have gotten more sophisticated, so our paper should be viewed as a study of bidders adjustment to a pricing mechanism with which they are not too familiar

Q\&A

