#### What Makes Them Click: Empirical Analysis of Consumer Demand for Search Advertising By Przemyslaw Jeziorski and Ilya Segal American Economic Journal: Microeconomics, 2015

#### Miguel Alcobendas

Yahoo!

February 18, 2018

#### Introduction:

- Objective: Understand the behavior or users in sponsored search advertising
- Existing Restrictive Models:
  - Edelman, Ostrovsky, and Schwarz (2007) (EOS) assumes CTR for a given ad in a given position is a product of an ad and position-specific effect, and it does not depend on other displayed ads.
  - Cascade Model: users consider the ads sequentially from top to bottom, deciding whether to click on the current ad and whether to continue clicking
- The paper presents a less restrictive model

#### Introduction: Why is the paper interesting?

- Test EOS separability assumption
- Measure elasticity of substitution for each query
- Measure how far we are from the welfare-optimal allocation
- Dynamic programming model to measure the impact of NFP lines on user behavior

#### Introduction:

- Empirical analysis contradicts existing theoretical models
- Against EOS: CTR on a given ad in a given position **DEPENDS** on other ads shown in other positions
- Against "Casacade Model":
  - 46% of users who click on ads do not click sequentially
  - CTR on a given ad and position depends on which ads are shown below it
  - CTR on a given ad and position depends on the order of shown ads in higher positions

#### Introduction: Model

- User chooses clicks sequentially under uncertainty about the quality of ads (prior)
- Ad-quality signals coming from ad descriptions, ratings,... are used to update the prior of quality ads (posterior learning model)
- Model parametrizes the degree of substitutability (satiation) among ads
- Model endogenizes the drop in the CTR associated with lower positions:
  - scrolling costs (fixed effects)
  - users' expectations about the quality of ads at different positions
    - priors about the quality of ads on each position user's specific
    - Users update priors with signals about the quality of an ad contained in an ad description

(日) (周) (三) (三)

#### Introduction: Results

- The estimate of the mean substitutability parameter is statistically different from 0
- There exists heterogeneity across users and uncertainty regarding ads quality
- Counterfactuals
  - If substitutability were absent, clicks would have been 51% higher
  - If user's uncertainty regarding ads quality were resolved prior to clicking, consumer welfare would be 1% higher and CTR would increase 0.4%
  - Generate impressions that maximize the total CTR or the expected user welfare
    - In the EOS model, CTR is maximized by assortative matching of higher-quality ads to better positions --> Improves welfare by 11% and CTR by 8%
    - Welfare-optimal --> 33% welfare improvement and 23% CTR improvement

(日) (周) (三) (三)

#### The data and industry

- Microsoft's Live Search Advertising Engine (2008)
- Search strings (exact match): "games", "weather", "white pages", "sex"

< A >

## The data and industry: Existence of Externalities

• EOS assumption does not hold

| Competitor | CTR<br>Domain 1               | : | Competitor | CTR<br>Domain 1                                 |
|------------|-------------------------------|---|------------|-------------------------------------------------|
| Domain 2   | $\underset{(0.0060)}{0.0763}$ | - | Domain 2   | $\underset{(0.0020)}{0.0189}$                   |
| Domain 3   | $\underset{(0.0138)}{0.1842}$ | - | Domain 3   | $\underset{\scriptscriptstyle(0.0038)}{0.0535}$ |
| Domain 4   | $\underset{(0.0240)}{0.1078}$ |   | Domain 4   | no observations                                 |

#### Figure: White Pages

Weather

Image: A mathematical states and a mathem

- Domain 1's CTR if located in position 2 as a function of domains in position 1
- Users being satiated after clicking on good advertisements (negative externalities: Domain 2 good ad Domain 3 bad ad)

Miguel Alcobendas

Jeziorski & Segal

#### The data and industry: Existence of Externalities

|               | Domain 1 present<br>as a competitor<br>in lower positions? | CTR<br>of position 1 | Difference in CTRs<br>of position 1 | No. obs. | Average no. of ads<br>in the impression |
|---------------|------------------------------------------------------------|----------------------|-------------------------------------|----------|-----------------------------------------|
| Domain 2      | Yes                                                        | 0.11                 | 0.074***                            | 5,061    | 6.1                                     |
| in position 1 | No                                                         | 0.18                 | (0.009)                             | 2,112    | 7.1                                     |
| Domain 3      | Yes                                                        | 0.16                 | 0.067***                            | 1,560    | 7.1                                     |
| in position 1 | No                                                         | 0.22                 | (0.013)                             | 2,022    | 7.6                                     |
| Domain 4      | Yes                                                        | 0.16                 | 0.019                               | 304      | 7.3                                     |
| in position 1 | No                                                         | 0.17                 | (0.032)                             | 253      | 7.3                                     |

3

### The data and industry

|                        | Search string and domain at position 1 |                     |                         |                 |
|------------------------|----------------------------------------|---------------------|-------------------------|-----------------|
|                        | games<br>Domain 1                      | weather<br>Domain 1 | white pages<br>Domain 1 | sex<br>Domain 1 |
| Clicking on pos. 1     | 0.051                                  | 0.046               | 0.17                    | 0.037           |
| Not clicking on pos. 1 | 0.034                                  | 0.043               | 0.116                   | 0.045           |
| Difference             | $0.017^{***}_{(0.005)}$                | 0.003 (0.006)       | $0.054^{***}$           | 0.008 (0.006)   |

Figure: Proba of clicking on ads in positions 2-8 conditional on clicking and not clicking in position 1

- Positive correlation between clicks on different positions in a given impression
- EOS model predicts correlation equals zero
- Satiation will create negative correlation among clicks

11

Paper models vertical heterogeneity of user valuations of ads (δ<sub>i</sub>): users may have higher utilities for all ads

Miguel Alcobendas

#### Model

• The user's value of clicking on an ad "a"

$$\mathbf{v}_{ai} = \mathbf{v}_a + \epsilon_{ai} + \delta_i$$

where

- $v_a$  mean quality of the link *a* common to all users
- $\epsilon_{ai}$  idiosyncratic shock to quality of the link a
- $\delta_i$  user specific shock to value of any sponsored links (ad independent)
- *v<sub>ai</sub>* is unobserved before clicking, but user has a prior that is updated after reading ad description (ratings, sitelinks, ...)

#### Model

• The user's value of clicking on an ad "a"

$$\mathbf{v}_{ai} = \mathbf{v}_a + \epsilon_{ai} + \delta_i$$

where

- $v_a$  mean quality of the link *a* common to all users
- $\epsilon_{ai}$  idiosyncratic shock to quality of the link a
- $\delta_i$  user specific shock to value of any sponsored links (ad independent)
- *v<sub>ai</sub>* is unobserved before clicking, but user has a prior that is updated after reading ad description (ratings, sitelinks, ...)
- "Constant Elasticity of Substitution" utility function: The user can click a subset C of ad slots and obtain a gross utility of

$$U_i(C) = \left(\sum_{n \in C} v_{a(n)i}^{1+R_i}\right)^{1/(1+R_i)} - \sum_{n \in C} f_n$$

where

- $f_n$  is the cost of clicking on an ad in position n (e.g. scrolling effort)
- *R<sub>i</sub>* (Satiation Parameter) captures the substitutability of different ads to the user.
- Unobserved parameters

(日) (周) (三) (三)

#### Model

$$v_{ai} = v_a + \epsilon_{ai} + \delta_i$$

$$U_i(C) = \left(\sum_{n \in C} v_{a(n)i}^{1+R_i}\right)^{1/(1+R_i)} - \sum_{n \in C} f_n$$

where

- Additively separable utility (R<sub>i</sub> = 0): User's clicking decisions on different ads are independent, no externalities are present across data
- $R_i = 0$  and "No user random effects": Model nests Edelman, Ostrovsky, and Schwarz (2007) (EOS) model.



- Perfect Substitutability (R<sub>i</sub> = ∞): user derives utility from at most one ad (e.g. no benefit from a second weather forecast)
- R<sub>i</sub>, v<sub>a</sub> and f<sub>n</sub> unobserved for the researcher

#### Model: Decision Problem

- user searches for a keyword and forms priors about the quality of ads at each position
- 2 User observes the impression and reads descriptions of all ads in the impression
- Oser either clicks on an ad in a chosen position or stops clicking
- **4** User observes the true quality  $v_a$  of a clicked ad a(c)
- Go to (3)

#### Model: Decision Problem

- user searches for a keyword and forms priors about the quality of ads at each position
- 2 User observes the impression and reads descriptions of all ads in the impression
- Oser either clicks on an ad in a chosen position or stops clicking
- User observes the true quality  $v_a$  of a clicked ad a(c)
- 6 Go to (3)

#### **Dynamic Programming Problem**

- Let  $C \subset \{1, ..., N\}$  the set of clicked positions (decision variable)
- Let S the state variable that captures the utility of C,  $S = \sum_{n \in C} v_{a(n)i}^{1+R_i}$

$$V_{i}(C,S) = max\{S^{1/(1+R_{i})} - \sum_{n \in C} f_{n}, \max_{q \in \{1,...,N\} \setminus C} EV_{i}\left(C \cup q, S + v_{a(q)i}^{1+R_{i}}\right)\}$$

Expectation taken with respect to the posterior of  $v_{a(q)i}$ 

#### Estimation: Identification

- We observe the CTR of same domains placed in different positions: position fixed effect identification
- We observe CTRs of different ads in the same position: identification of ad quality v<sub>a</sub>

# Results: Clicking Costs Estimates $(f_n)$

|            | Search string                                 |                                               |                                               |                                               |
|------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
|            | games                                         | weather                                       | white pages                                   | sex                                           |
| Position 1 | $\underset{\scriptscriptstyle(0.031)}{-1.66}$ | $\underset{\scriptscriptstyle(0.028)}{-1.10}$ | $\underset{\scriptscriptstyle(0.025)}{-1.94}$ | $\underset{\scriptscriptstyle(0.053)}{-2.01}$ |
| Position 2 | $\underset{\scriptscriptstyle(0.023)}{-1.64}$ | $\underset{\scriptscriptstyle(0.032)}{-1.71}$ | $\underset{\scriptscriptstyle(0.024)}{-2.59}$ | $\underset{\scriptscriptstyle(0.051)}{-2.20}$ |
| Position 3 | $\underset{\scriptscriptstyle(0.020)}{-2.07}$ | $\underset{\scriptscriptstyle(0.030)}{-2.12}$ | $\underset{\scriptscriptstyle(0.031)}{-3.25}$ | $\underset{\scriptscriptstyle(0.065)}{-2.54}$ |
| Position 4 | $\underset{\scriptscriptstyle(0.075)}{-3.68}$ | $\underset{\scriptscriptstyle(0.048)}{-3.84}$ | $\underset{\scriptscriptstyle(0.091)}{-5.30}$ | $\underset{\scriptscriptstyle(0.206)}{-3.18}$ |
| Position 5 | $\underset{\scriptscriptstyle(0.140)}{-3.98}$ | $\underset{\scriptscriptstyle(0.104)}{-4.28}$ | $\underset{\scriptscriptstyle(0.201)}{-5.52}$ | $\underset{\scriptscriptstyle(0.611)}{-4.38}$ |

Table 4: Estimates of clicking cost in the baseline model.

- Utility of not clicking is normalized to 0
- EOS world  $R_i = 0$ : Exponentiating the cost differences, we obtain the ratios of CTRs on different positions.

$$\frac{CTR_{1,games}}{CTR_{5,games}} = \frac{(e^{v_a}) \times (e^{-f_{1,games}})}{(e^{v_a}) \times (e^{-f_{5,games}})} = \frac{e^{-1.66}}{e^{-3.98}_{\Box \to \Box}} \approx 10$$

$$\underbrace{\text{Miguel Alcobendas}}_{\text{Jeziorski \& Segal}} \xrightarrow{\text{February 18, 2018}} 15 / 37$$

## Results: Mean Qualities v<sub>a</sub> Estimates for Each Keyword

|          | Search string                                 |                                               |                                               |                                               |
|----------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
|          | games                                         | weather                                       | white pages                                   | sex                                           |
| Domain 1 | -2.04 (0.054)                                 | -2.70 (0.040)                                 | -0.35 (0.057)                                 | $\underset{\scriptscriptstyle(0.038)}{-0.38}$ |
| Domain 2 | $\underset{\scriptscriptstyle(0.051)}{-2.06}$ | $\underset{\scriptscriptstyle(0.021)}{-3.66}$ | $\underset{\scriptscriptstyle(0.040)}{-1.08}$ | $\underset{\scriptscriptstyle(0.046)}{-2.11}$ |
| Domain 3 | $-1.27$ $_{(0.055)}$                          | $\underset{\scriptscriptstyle(0.046)}{-3.82}$ | $\underset{\scriptscriptstyle(0.033)}{-1.26}$ | $\underset{\scriptscriptstyle(0.051)}{-2.70}$ |
| Domain 4 | -2.21 (0.058)                                 | $-2.70$ $_{(0.040)}$                          | $\underset{\scriptscriptstyle(0.081)}{-0.80}$ | $-1.36$ $_{(0.097)}$                          |
| Domain 5 | $-2.83$ $_{(0.036)}$                          | $\underset{\scriptscriptstyle(0.034)}{-4.53}$ | $-2.71$ $_{(0.044)}$                          | $\underset{\scriptscriptstyle(0.073)}{-3.13}$ |

Table 6: Estimates of domain quality and probabilities of relevance.

- The higher the estimate v<sub>a</sub>, the higher is the relevance of the ad for a particular query.
- The estimates matches the visual inspection of ads

イロト 不得 トイヨト イヨト 二日

#### Results: Satiation Parameter $(R_i)$ and Preference Shocks

| Satiatic                                     | on parameter               | Preference shock              |
|----------------------------------------------|----------------------------|-------------------------------|
| Mean $(R)$                                   | Std. dev. $(\sigma_R)$     | Std. dev. $(\sigma_{\delta})$ |
| $\underset{\scriptscriptstyle(0.026)}{0.57}$ | $\underset{(0.028)}{0.18}$ | $\underset{(0.027)}{2.15}$    |

*R* ≠ 0: Substitution across ads. Edelman, Ostrovsky, and Schwarz (2007) (EOS) assumption does not hold. Click decision on different ads ARE NOT INDEPENDENT

イロト 不得下 イヨト イヨト 二日