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Introduction

Structural Econometrics of Auction Data: why should we estimate
the distribution of unobserved bidder valuations?

Main statistics of unobserved valuations
Effects of covariates on bidding behavior
Optimal reserve price
Expected revenues of the seller
Counterfactuals: auction design
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Problem 1

N potential bidders who are vying to purchase an object at a Vickrey auction
within the Independent Private-Value Paradigm (IPVP). (Non-cooperative
game with incomplete information) (vs Common Value Paradigm )

Given bidders valuations (Unobserved ): V(1:N ) > V(2:N ) > ... > V(N :N ), bidder
with the highest valuation V(1:N ) wins the Vickrey auction and pays what his
nearest opponent V(2:N ) is willing to pay. (same CDF F 0

V )

At Vickrey auctions with reserve price, the dominant bidding strategy is to bid
ones valuation, so bidder i’s bid Bi is related to his valuation Vi according to

Bi = β(Vi ) = Vi r ≤ Vi

r is the reserve price

A collection of homogeneous objects is sold individually at a sequence of T
different Vickrey auctions where r = $0.50
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Problem 1: distribution of valuations using winning bids
Schema 1: at auction t, only the winning bid wt as well as a measure of the
number of potential competitors Nt is recorded ({(Nt ,wt)}Tt=1)

Estimate the distribution of unobserved valuations using the winning bids W . (see
”win.dat” )

Relationship between observed bids and valuations

f 0
B (b) = f 0

V (v) , F 0
B(b) = F 0

V (v)

even if only the winning bid w is observed at a Vickrey auction, F 0
V (v) is

nonparametrically identified since

W = V(2:N )

(for r = 0) The cumulative distribution function of the second-highest order
statistic equals

FW (w |Nt) = NtFV (w)Nt−1 − (Nt − 1)FV (w)Nt

following (Arnold, Balakrishnan, and Nagaraja (1992)) the distribution of any
single order statistic (k : N ) has the distribution

F
(k:N )
Y (s) =

N !

(N − k)!(k − 1)!

∫ FY (s)

0

uN−k(1− u)k−1du
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Problem 1: distribution of valuations using winning bids
(for r = 0) the corresponding density function

fW (w |Nt) =
FW (w |Nt)

∂w
= Nt(Nt − 1)FV (w)Nt−2[1− FV (w)]fV (w)

(for r > 0) Truncated distribution

(Amemiya (1985)) The density function where {(Nt ,wt)}Tt=1 are available equals

fWt (w) =
Nt(Nt − 1)FV (w)Nt−2[1− FV (w)]fV (w)

[1− FV (r)Nt ]
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Problem 1: distribution of valuations using winning bids

The likelihood function (L) is

L = ΠT
t=1
Nt(Nt − 1)FV (w)Nt−2[1− FV (w)]fV (w)

[1− FV (r)Nt ]

Assume that the distribution of heterogeneity is from the Weibull family (show
distribution )

fV (v ; θ) = θ1θ2v
θ2−1exp(−θ1v

θ2 ) v ≥ 0, θ1 > 0, θ2 > 0

Estimate θ1 and θ1 by method of maximum likelihood

Objective function (see prog33slide1.m )

minθ − log(L)

Estimates θ̂ML
1 = 0.9088 and θ̂ML

2 = 2.0145

Plot truncated fV (v ; θ)

Plot truncated FV (v ; θ)
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Problem 1: Estimation of the distribution of winning bids

Figure: Truncated Density Function
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Problem 1: Estimation of the distribution of winning bids

Figure: Truncated CDF
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Problem 1: Nonparametric estimate of F 0
V (v)

Calculate an estimate of F 0
V (v) for valuations that are above the reserve price.

When N does not vary across auctions a np estimator of CDF of W equals

F̂W (w) =
1

T

T∑
t=1

I (Wt ≤ wt)

Given F̂W (w) we can estimate F̂V (v) solving

F̂W (w |Nt) = Nt F̂V (w)Nt−1 − (Nt − 1)F̂V (w)Nt

”win.dat” (prog33fslide2.m): five estimates of F̂V for different values of
N = [5, 6, 7, 8, 9]
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Problem 1: Maximum likelihood estimate of the optimal
reserve price ρ∗

Test if the existing reserve price of $0.50 is optimal
(Riley and Samuelson (1981)) The expected PROFIT for the seller is

v0FV (r)N +N
∫ v̄

r

[ufV (u) + FV (u)− 1]FV (u)N−1du

Differentiating this wrt the reserve price r and equalling zero (r → ρ∗)

N v0FV (r)N−1fV (r)−N [rfV (r) + FV (r)− 1]FV (r)N−1 = 0

Optimal reserve price (ρ∗)

ρ∗ = v0 +
[1− FV (ρ∗)]

fV (ρ∗)

√
T (ρ̂− ρ0)→ N (0,Ω)

Is ρ = 0.5 optimal? (see prog33jslide6.m )

H0 : ρ∗ = 0.5 H1 : ρ∗ 6= 0.5

for α = 0.05 we reject H0 if

ρ∗ − 0.5√
Ω̂

> 1.96

(when v0 = 0): ρ∗ is 0.7407 with a std of 0.0431, standard-normal test statistic is
5.5789: REJECT the hypothesis that an r of 0.50 is optimal
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Problem 1: Covariates
Covariates control for heterogeneity of objects (e.g. year, month) (Z)

Density and cumulative distribution functions of V conditional on covariates (Z)

f 0
V |Z (v |z) F 0

V |Z (v |z)

Introduce covariate zt in the probability density function (see ”win.dat”)

fV (v ; θ,Zt) = exp(θ10 + θ11zt)θ2v
θ2−1exp(−exp(θ10 + θ11zt)v

θ2 )

where θ1 = exp(θ10 + θ11zt)

Maximum likelihood estimates (see prog33hslide4.m ):

minθ − log(L)

θ10 = −0.1230 θ11 = 0.0062 θ2 = 2.0138, log(L) = −5.6558

Test whether θ11 = 0 using the likelihood ratio-test

H0 : θ11 = 0 H0 : θ11 6= 0

Ratio-Test Statistic⇒ LR = −2 ∗ (log(L0)− log(L1)) ∼ χ2
α,df

for α = 0.05 and df equals Nb parameters H1 - Nb parameters H0 and equals 1
⇒ χ2

0.05,1 = 3.8414, LR = −2 ∗ (−5.6940 + 5.6558) = 0.0763

LR < 3.8414 ⇒ we cannot reject H0
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Problem 2: distribution of valuations using submitted bids

N pottential bidders who are vying to purchase an object at a Vickrey auction
within the IPVP.

At Vickrey auctions, the dominant bidding strategy is to bid ones valuation, so
bidder i’s bid Bi is related to his valuation Vi according to

Bi = β(Vi ) = Vi r ≤ Vi

r is the reserve price

A collection of homogeneous objects is sold individually at a sequence of T
different Vickrey auctions where r = $0.50

Schema 2: at auction t, only the bids submitted bt , which equals
[b(1:nt ), b(2:nt ), ..., b(nt :nt )] are available (see ”bids.dat”)
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Problem 2: distribution of valuations using submitted bids

The probability density function where {(bt , nt)}Tt=1 are available

g [b(n), n] = n!Πn
i=1

fV [b(i :n)]

[1− FV (r)]

which implies that the likelihood function is

L = ΠT
t=1nt !Π

nt
i=1

fV [b(i :nt )]

[1− FV (r)]

Assume that the distribution of heterogeneity is from the Weibull family

fV (v ; θ) = θ1θ2v
θ2−1exp(−θ1v

θ2 ) v ≥ 0, θ1 > 0, θ2 > 0

Estimate θ1 and θ1 by method of maximum likelihood

Objective function

minθ − log(L)

(see ”bids.dat”) Maximum Likelihood Estimates: θ̂ML
1 = 0.9177 and θ̂ML

2 = 2.1138
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Problem 2: distribution of valuations using submitted bids

Figure: Truncated Density Function
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Problem 2: distribution of valuations using submitted bids
kernel-smoothed estimate of f 0

V (v)

Kernel Estimator

f̂V (v) =
1

Th

T∑
t=1

κ

(
Vt − v

h

)
where

κ

(
Vt − v

h

)
=

1√
2π

exp

[
−(Vt − v)2

2h2

]
h is the bandwidth (Silverman (1986) 1.06σT−1/5)
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Problem 2: distribution of valuations using submitted bids
kernel-smoothed estimate of f 0

V (v)

Figure: Truncated Density Function
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