Empirical Auctions Models II

Miguel Alcobendas

Yahoo!

December 3, 2017

Introduction

- Structural Econometrics of Auction Data: why should we estimate the distribution of unobserved bidder valuations?
- Main statistics of unobserved valuations
- Effects of covariates on bidding behavior
- Optimal reserve price
- Expected revenues of the seller
- Counterfactuals: auction design

Problem 1

- \mathcal{N} potential bidders who are vying to purchase an object at a Vickrey auction within the Independent Private-Value Paradigm (IPVP). (Non-cooperative game with incomplete information) (vs Common Value Paradigm)
- Given bidders valuations (Unobserved): $V_{(1: \mathcal{N})}>V_{(2: \mathcal{N})}>\ldots>V_{(\mathcal{N}: \mathcal{N})}$, bidder with the highest valuation $V_{(1: \mathcal{N})}$ wins the Vickrey auction and pays what his nearest opponent $V_{(2: \mathcal{N})}$ is willing to pay. (same CDF F_{V}^{0})

Problem 1

- \mathcal{N} potential bidders who are vying to purchase an object at a Vickrey auction within the Independent Private-Value Paradigm (IPVP). (Non-cooperative game with incomplete information) (vs Common Value Paradigm)
- Given bidders valuations (Unobserved): $V_{(1: \mathcal{N})}>V_{(2: \mathcal{N})}>\ldots>V_{(\mathcal{N}: \mathcal{N})}$, bidder with the highest valuation $V_{(1: \mathcal{N})}$ wins the Vickrey auction and pays what his nearest opponent $V_{(2: \mathcal{N})}$ is willing to pay. (same CDF F_{V}^{0})
- At Vickrey auctions with reserve price, the dominant bidding strategy is to bid ones valuation, so bidder i's bid B_{i} is related to his valuation V_{i} according to

$$
B_{i}=\beta\left(V_{i}\right)=V_{i} r \leq V_{i}
$$

- r is the reserve price
- A collection of homogeneous objects is sold individually at a sequence of T different Vickrey auctions where $r=\$ 0.50$

Problem 1: distribution of valuations using winning bids

- Schema 1: at auction t, only the winning bid w_{t} as well as a measure of the number of potential competitors \mathcal{N}_{t} is recorded $\left(\left\{\left(\mathcal{N}_{t}, w_{t}\right)\right\}_{t=1}^{T}\right)$
- Estimate the distribution of unobserved valuations using the winning bids W. (see "win.dat")

Problem 1: distribution of valuations using winning bids

- Schema 1: at auction t, only the winning bid w_{t} as well as a measure of the number of potential competitors \mathcal{N}_{t} is recorded $\left(\left\{\left(\mathcal{N}_{t}, w_{t}\right)\right\}_{t=1}^{T}\right)$
- Estimate the distribution of unobserved valuations using the winning bids W. (see "win.dat")
- Relationship between observed bids and valuations

$$
f_{B}^{0}(b)=f_{V}^{0}(v), \quad F_{B}^{0}(b)=F_{V}^{0}(v)
$$

even if only the winning bid w is observed at a Vickrey auction, $F_{V}^{0}(v)$ is nonparametrically identified since

$$
W=V_{(2: \mathcal{N})}
$$

Problem 1: distribution of valuations using winning bids

- Schema 1: at auction t, only the winning bid w_{t} as well as a measure of the number of potential competitors \mathcal{N}_{t} is recorded $\left(\left\{\left(\mathcal{N}_{t}, w_{t}\right)\right\}_{t=1}^{T}\right)$
- Estimate the distribution of unobserved valuations using the winning bids W. (see "win.dat")
- Relationship between observed bids and valuations

$$
f_{B}^{0}(b)=f_{V}^{0}(v), \quad F_{B}^{0}(b)=F_{V}^{0}(v)
$$

even if only the winning bid w is observed at a Vickrey auction, $F_{V}^{0}(v)$ is nonparametrically identified since

$$
W=V_{(2: \mathcal{N})}
$$

- (for $r=0$) The cumulative distribution function of the second-highest order statistic equals

$$
F_{W}\left(w \mid \mathcal{N}_{t}\right)=\mathcal{N}_{t} F_{V}(w)^{\mathcal{N}_{t}-1}-\left(\mathcal{N}_{t}-1\right) F_{V}(w)^{\mathcal{N}_{t}}
$$

following (Arnold, Balakrishnan, and Nagaraja (1992)) the distribution of any single order statistic $(k: \mathcal{N})$ has the distribution

$$
F_{Y}^{(k: \mathcal{N})}(s)=\frac{\mathcal{N}!}{(\mathcal{N}-k)!(k-1)!} \int_{0}^{F_{Y}(s)} u^{\mathcal{N}-k}(1-u)^{k-1} d u
$$

Problem 1: distribution of valuations using winning bids

- (for $r=0$) the corresponding density function

$$
f_{W}\left(w \mid \mathcal{N}_{t}\right)=\frac{F_{W}\left(w \mid \mathcal{N}_{t}\right)}{\partial w}=\mathcal{N}_{t}\left(\mathcal{N}_{t}-1\right) F_{V}(w)^{\mathcal{N}_{t}-2}\left[1-F_{V}(w)\right] f_{V}(w)
$$

- (for $r>0$) Truncated distribution

- (Amemiya (1985)) The density function where $\left\{\left(\mathcal{N}_{t}, w_{t}\right)\right\}_{t=1}^{T}$ are available equals

$$
f_{W_{t}}(w)=\frac{\mathcal{N}_{t}\left(\mathcal{N}_{t}-1\right) F_{V}(w)^{\mathcal{N}_{t}-2}\left[1-F_{V}(w)\right] f_{V}(w)}{\left[1-F_{V}(r)^{\mathcal{N}_{t}}\right]}
$$

Problem 1: distribution of valuations using winning bids

- The likelihood function (L) is

$$
L=\Pi_{t=1}^{T} \frac{\mathcal{N}_{t}\left(\mathcal{N}_{t}-1\right) F_{V}(w)^{\mathcal{N}_{t}-2}\left[1-F_{V}(w)\right] f_{V}(w)}{\left[1-F_{V}(r)^{\mathcal{N}_{t}}\right]}
$$

- Assume that the distribution of heterogeneity is from the Weibull family (show distribution)

$$
f_{V}(v ; \theta)=\theta_{1} \theta_{2} v^{\theta_{2}-1} \exp \left(-\theta_{1} v^{\theta_{2}}\right) \quad v \geq 0, \theta_{1}>0, \theta_{2}>0
$$

Problem 1: distribution of valuations using winning bids

- The likelihood function (L) is

$$
L=\Pi_{t=1}^{T} \frac{\mathcal{N}_{t}\left(\mathcal{N}_{t}-1\right) F_{V}(w)^{\mathcal{N}_{t}-2}\left[1-F_{V}(w)\right] f_{V}(w)}{\left[1-F_{V}(r)^{\mathcal{N}_{t}}\right]}
$$

- Assume that the distribution of heterogeneity is from the Weibull family (show distribution)

$$
f_{V}(v ; \theta)=\theta_{1} \theta_{2} v^{\theta_{2}-1} \exp \left(-\theta_{1} v^{\theta_{2}}\right) \quad v \geq 0, \theta_{1}>0, \theta_{2}>0
$$

- Estimate θ_{1} and θ_{1} by method of maximum likelihood
- Objective function (see prog33slide1.m)

$$
\min _{\theta}-\log (L)
$$

- Estimates $\hat{\theta}_{1}^{M L}=0.9088$ and $\hat{\theta}_{2}^{M L}=2.0145$
- Plot truncated $f_{V}(v ; \theta)$
- Plot truncated $F_{V}(v ; \theta)$

Problem 1: Estimation of the distribution of winning bids

Figure: Truncated Density Function

Problem 1: Estimation of the distribution of winning bids

Figure: Truncated CDF

Problem 1: Nonparametric estimate of $F_{V}^{0}(v)$

- Calculate an estimate of $F_{V}^{0}(v)$ for valuations that are above the reserve price.
- When \mathcal{N} does not vary across auctions a np estimator of CDF of W equals

$$
\hat{F}_{W}(w)=\frac{1}{T} \sum_{t=1}^{T} I\left(W_{t} \leq w_{t}\right)
$$

- Given $\hat{F}_{W}(w)$ we can estimate $\hat{F}_{V}(v)$ solving

$$
\hat{F}_{W}\left(w \mid \mathcal{N}_{t}\right)=\mathcal{N}_{t} \hat{F}_{V}(w)^{\mathcal{N}_{t}-1}-\left(\mathcal{N}_{t}-1\right) \hat{F}_{V}(w)^{\mathcal{N}_{t}}
$$

- "win.dat" (prog33fslide2.m): five estimates of \hat{F}_{V} for different values of $\mathcal{N}=[5,6,7,8,9]$

Problem 1: Maximum likelihood estimate of the optimal reserve price ρ^{*}

- Test if the existing reserve price of $\$ 0.50$ is optimal
- (Riley and Samuelson (1981)) The expected PROFIT for the seller is

$$
v_{0} F_{V}(r)^{\mathcal{N}}+\mathcal{N} \int_{r}^{\bar{V}}\left[u f_{V}(u)+F_{V}(u)-1\right] F_{V}(u)^{\mathcal{N}-1} d u
$$

Problem 1: Maximum likelihood estimate of the optimal reserve price ρ^{*}

- Test if the existing reserve price of $\$ 0.50$ is optimal
- (Riley and Samuelson (1981)) The expected PROFIT for the seller is

$$
v_{0} F_{V}(r)^{\mathcal{N}}+\mathcal{N} \int_{r}^{\bar{v}}\left[u f_{V}(u)+F_{V}(u)-1\right] F_{V}(u)^{\mathcal{N}-1} d u
$$

- Differentiating this wrt the reserve price r and equalling zero $\left(r \rightarrow \rho^{*}\right)$

$$
\mathcal{N} v_{0} F_{V}(r)^{\mathcal{N}-1} f_{V}(r)-\mathcal{N}\left[r f_{V}(r)+F_{V}(r)-1\right] F_{V}(r)^{\mathcal{N}-1}=0
$$

- Optimal reserve price $\left(\rho^{*}\right)$

$$
\rho^{*}=v_{0}+\frac{\left[1-F_{V}\left(\rho^{*}\right)\right]}{f_{V}\left(\rho^{*}\right)} \quad \sqrt{T}\left(\hat{\rho}-\rho^{0}\right) \rightarrow \mathcal{N}(0, \Omega)
$$

Problem 1: Maximum likelihood estimate of the optimal reserve price ρ^{*}

- Test if the existing reserve price of $\$ 0.50$ is optimal
- (Riley and Samuelson (1981)) The expected PROFIT for the seller is

$$
v_{0} F_{V}(r)^{\mathcal{N}}+\mathcal{N} \int_{r}^{\bar{V}}\left[u f_{V}(u)+F_{V}(u)-1\right] F_{V}(u)^{\mathcal{N}-1} d u
$$

- Differentiating this wrt the reserve price r and equalling zero $\left(r \rightarrow \rho^{*}\right)$

$$
\mathcal{N} v_{0} F_{V}(r)^{\mathcal{N}-1} f_{V}(r)-\mathcal{N}\left[r f_{V}(r)+F_{V}(r)-1\right] F_{V}(r)^{\mathcal{N}-1}=0
$$

- Optimal reserve price $\left(\rho^{*}\right)$

$$
\rho^{*}=v_{0}+\frac{\left[1-F_{V}\left(\rho^{*}\right)\right]}{f_{V}\left(\rho^{*}\right)} \quad \sqrt{T}\left(\hat{\rho}-\rho^{0}\right) \rightarrow \mathcal{N}(0, \Omega)
$$

- Is $\rho=0.5$ optimal? (see prog33jslide6.m)

$$
H_{0}: \rho^{*}=0.5 \quad H_{1}: \rho^{*} \neq 0.5
$$

for $\alpha=0.05$ we reject H_{0} if

$$
\frac{\rho^{*}-0.5}{\sqrt{\hat{\Omega}}}>1.96
$$

- (when $v_{0}=0$): ρ^{*} is 0.7407 with a std of 0.0431 , standard-normal test statistic is 5.5789: REJECT the hypothesis that an r of 0.50 is optimal

Problem 1: Covariates

- Covariates control for heterogeneity of objects (e.g. year, month) (Z)
- Density and cumulative distribution functions of V conditional on covariates (Z)

$$
f_{V \mid Z}^{0}(v \mid z) \quad F_{V \mid Z}^{0}(v \mid z)
$$

- Introduce covariate z_{t} in the probability density function (see "win.dat")

$$
f_{V}\left(v ; \theta, Z_{t}\right)=\exp \left(\theta_{10}+\theta_{11} z_{t}\right) \theta_{2} v^{\theta_{2}-1} \exp \left(-\exp \left(\theta_{10}+\theta_{11} z_{t}\right) v^{\theta_{2}}\right)
$$

where $\theta_{1}=\exp \left(\theta_{10}+\theta_{11} z_{t}\right)$

- Maximum likelihood estimates (see prog33hslide4.m):

$$
\begin{gathered}
\min _{\theta}-\log (L) \\
\theta_{10}=-0.1230 \theta_{11}=0.0062 \theta_{2}=2.0138, \log (L)=-5.6558
\end{gathered}
$$

Problem 1: Covariates

- Covariates control for heterogeneity of objects (e.g. year, month) (Z)
- Density and cumulative distribution functions of V conditional on covariates (Z)

$$
f_{V \mid Z}^{0}(v \mid z) \quad F_{V \mid Z}^{0}(v \mid z)
$$

- Introduce covariate z_{t} in the probability density function (see "win.dat")

$$
f_{V}\left(v ; \theta, Z_{t}\right)=\exp \left(\theta_{10}+\theta_{11} z_{t}\right) \theta_{2} v^{\theta_{2}-1} \exp \left(-\exp \left(\theta_{10}+\theta_{11} z_{t}\right) v^{\theta_{2}}\right)
$$

where $\theta_{1}=\exp \left(\theta_{10}+\theta_{11} z_{t}\right)$

- Maximum likelihood estimates (see prog33hslide4.m):

$$
\begin{gathered}
\min _{\theta}-\log (L) \\
\theta_{10}=-0.1230 \theta_{11}=0.0062 \theta_{2}=2.0138, \log (L)=-5.6558
\end{gathered}
$$

- Test whether $\theta_{11}=0$ using the likelihood ratio-test

$$
H_{0}: \theta_{11}=0 \quad H_{0}: \theta_{11} \neq 0
$$

$$
\text { Ratio-Test Statistic } \Rightarrow L R=-2 *\left(\log \left(L_{0}\right)-\log \left(L_{1}\right)\right) \sim \chi_{\alpha, d f}^{2}
$$

for $\alpha=0.05$ and $d f$ equals Nb parameters $H_{1}-\mathrm{Nb}$ parameters H_{0} and equals 1 $\Rightarrow \chi_{0.05,1}^{2}=3.8414, L R=-2 *(-5.6940+5.6558)=0.0763$

- $L R<3.8414 \Rightarrow$ we cannot reject H_{0}

Problem 2: distribution of valuations using submitted bids

- \mathcal{N} pottential bidders who are vying to purchase an object at a Vickrey auction within the IPVP.
- At Vickrey auctions, the dominant bidding strategy is to bid ones valuation, so bidder i's bid B_{i} is related to his valuation V_{i} according to

$$
B_{i}=\beta\left(V_{i}\right)=V_{i} r \leq V_{i}
$$

- r is the reserve price
- A collection of homogeneous objects is sold individually at a sequence of T different Vickrey auctions where $r=\$ 0.50$
- Schema 2: at auction t, only the bids submitted b_{t}, which equals $\left[b_{\left(1: n_{t}\right)}, b_{\left(2: n_{t}\right)}, \ldots, b_{\left(n_{t}: n_{t}\right)}\right]$ are available (see "bids.dat")

Problem 2: distribution of valuations using submitted bids

- The probability density function where $\left\{\left(b_{t}, n_{t}\right)\right\}_{t=1}^{T}$ are available

$$
g\left[b_{(n)}, n\right]=n!\Pi_{i=1}^{n} \frac{f_{V}\left[b_{(i: n)}\right]}{\left[1-F_{V}(r)\right]}
$$

which implies that the likelihood function is

$$
L=\Pi_{t=1}^{T} n_{t}!\Pi_{i=1}^{n_{t}} \frac{f_{V}\left[b_{\left(i: n_{t}\right)}\right]}{\left[1-F_{V}(r)\right]}
$$

- Assume that the distribution of heterogeneity is from the Weibull family

$$
f_{V}(v ; \theta)=\theta_{1} \theta_{2} v^{\theta_{2}-1} \exp \left(-\theta_{1} v^{\theta_{2}}\right) v \geq 0, \theta_{1}>0, \theta_{2}>0
$$

- Estimate θ_{1} and θ_{1} by method of maximum likelihood
- Objective function

$$
\min _{\theta}-\log (L)
$$

- (see "bids.dat") Maximum Likelihood Estimates: $\hat{\theta}_{1}^{M L}=0.9177$ and $\hat{\theta}_{2}^{M L}=2.1138$

Problem 2: distribution of valuations using submitted bids

Figure: Truncated Density Function

Problem 2: distribution of valuations using submitted bids kernel-smoothed estimate of $f_{V}^{0}(v)$

- Kernel Estimator

$$
\hat{f}_{V}(v)=\frac{1}{T h} \sum_{t=1}^{T} \kappa\left(\frac{V_{t}-v}{h}\right)
$$

where

$$
\kappa\left(\frac{V_{t}-v}{h}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left[\frac{-\left(V_{t}-v\right)^{2}}{2 h^{2}}\right]
$$

h is the bandwidth (Silverman (1986) $1.06 \sigma T^{-1 / 5}$)

Problem 2: distribution of valuations using submitted bids

 kernel-smoothed estimate of $f_{V}^{0}(v)$

Figure: Truncated Density Function

