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Introduction:

Objective: Estimation method for a repeated first-price auction game under the
presence of capacity constraints

Application: Repeated highway construction procurement auctions in the state of
California between May 1996 and May 1999.

Idea: previously won uncompleted contracts reduce the probability of winning
further contracts. We quantify the effect of intertemporal constraints on bidders’
costs and on bids. Due to the intertemporal effect and also to bidder asymmetry,
the auction can be inefficient. Based on the estimates of costs, we quantify
efficiency losses.

Estimation Method: Two stage approach:

1 The distribution of bids conditional on state variables is estimated using data
on bids, bidder characteristics and contract characteristics

2 An expression of the expected sum of future profits based on the distribution
of bids is obtained, and costs are inferred based on the first order condition
of optimal bids
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Introduction:

Application: Repeated procurement auctions for highway paving contracts.

Previously won uncompleted contracts may affect the ability of win further

contracts. Two effects:

Winning a large contract may commit some of the bidder’s machines
and paving resources for the duration of the contract. Increasing the
costs for future contracts.
Expertise may lower the cost for future contracts.

Results: Capacity constraints affect firms’ bidding strategies. The cost of taking
on an additional contract is increasing in backlog. The increase in costs resulting
from a larger than average backlog seems to cancel out any cost-reducing expertise
effects.
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The data and industry

Data from Caltrans contract awards for highway and street construction made
between dec 1988 and May 1999

During this periods 2207 projects were awarded

The Bid data contains the following info: bid opening date; contract
number;location;reservation price;number of working days and the engineers’
estimate; name, address, amount of the bid, and the rank of the bid for each of
the bidding firms

Bidders may submit a sealed bid and they do not know who else submits a bid

The project is awarded to the lowest bidder provided it is below the reserve price.

The reserve price consists of a fixed nonrandom $ amount (R t) assigned prior to
the bidding. Existence of a secret reserve price.
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The data and industry

Backlock
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The data and industry

As the number of bidders increases, the relative difference between the low bid and
the Caltrans estimate falls.

Money Left on the table

Fringe vs Regular Bidders: More than 500 bidders submit a bid at least once.
Most of these bidders submit a bid once, or few occasions (Fringe). The number
of regular bidders per contract ranges from 0 to 4 and has an average of 0.53.
Regular bidders win 25% of the total dollar value awarded and 17% of all contracts.
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Reduced Form Estimates

A prediction is that the constrained bidders bid less frequently and higher than unconstrained bidders.

The estimates support our dynamic bidding model in 3 ways: 1, capacity constraints appear important. 2, bidders
additional state vars, location, and size are important. 3, a test of identical backlog effects cannot be rejected for the
majority of bidders (symmetry)
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Reduced Form vs Structural:

Why do we need to introduce economic theory?

Interaction between players and variables (e.g. probability of winning
depends on others’ bids, bids depend on unobserved costs, equilibrium
assumptions,...)
Counterfactuals (Policy Changes)

Miguel Alcobendas Jofre-Bonet & Pesendorfer September 27, 2016 8 / 30



The Bidding Model:

Discrete time with infinite horizon with two types of bidders

Regular bidders stay forever and are denoted by {1, ..., nr} and fringe stays one
period t and denoted by {nr + 1, ..., nt}

The stage game: In period t the buyer offers a single contract for sale.

1 The characteristics of the contract are revealed to all bidders.
2 Bidders learn their costs privately.
3 Bidders may submit bids.
4 The buyer may award the contract to the low bidder or reject all bids.

The contract characteristics s t0 are drawn iid from the exogenous F0(.), and are
assumed to be unknown to bidders.

s t0 include the physical attributes of the contract such as the contract size and
duration, the total number of fringe bidders, and a fixed reserve price of the seller
R t which is an upper bound on admissible bids.

Costs: each bidder i learns his cost for the contract c ti after the contract
characteristics are revealed. The cost is privately known and iid conditional on
state variables. The cost of a regular bidder i is drawn from the conditional
distribution F (.|s t0, s ti , s t−i ).
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The Bidding Model:

Bidder i’s state vector si records the remaining size in dollars and the
number of days left until completion of each project previously won by
bidder i .

Bids: b. All agents are risk neutral

The buyer awards the contract to the bidder with the low bid at a
price equal to her bid.

The buyer may decide to reject all bids if the lowest bid is greater
than Rt . (Existence of a secret reserve price)

Miguel Alcobendas Jofre-Bonet & Pesendorfer September 27, 2016 10 / 30



The Bidding Model:
The transaction function of the state variable ω is a deterministic function of the
contract characteristics and the state variables

Let the ith component of the transition function ω consist of the list of the sizes
and remaining times of all the project left to do for bidder i . It can be written as

ωi (s0, s, j) =

 ((z0, τ0), (
max(τ li−1,0)

τ li
z li ,max(τ li − 1, 0))τ̄−1

l=1 ) if contract winner j = i

((0, 0), (
max(τ li−1,0)

τ li
z li ,max(τ li − 1, 0))τ̄−1

l=1 ) otherwise

where

z li denotes the size of the project won by bidder i exactly l periods ago
τ li its remaining time until completion
For each project l , the size carried over to the next period z l+1

i , equals
(max(τ li − 1, 0)/τ li )z

l
i , and the remaining time until completion τ l+1

i

equals max(τ li − 1, 0).
If the contract at period t is won by bidder i , it is added at the
beginning of the list of projects with the initial size and time until
completion taken from the contract’s characteristics (z0, τ0) ∈ s0.

β ∈ (0, 1) firm’s patience with regard to future profits
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The Bidding Model:
We consider sequential equilibria and restrict our attention to symmetric stationary
Markovian strategies. Stationary Markovian strategies do not depend on time. The
future looks the same whether the agent is in state st at time t or in state st+k at
time t + k provided that st = st+k

b(ci , s0, si , s−i ): A strategy for bidder i is a function of bidder i ’s cost, the
contract’s characteristics, and her own and her competitors’ states.

Payoff of a regular bidder. The discounted sum of future expected payoffs for
bidder i can be written in value function form as

Wi (s, s0, ci , b−i ) = maxb[[b − ci ]Pr(i wins|b, s0, si , s−i , b−i )

+ β

n∑
j=0

Pr(j wins|b, s0, si , s−i , b−i )

× E0

∫
Wi (ω(s0, s, j), s

′
0, c
′
i , b−i )

× f (c ′i |s ′0, ωi (s0, s, j), ω−i (s0, s, j))dc ′i ]

where Pr(i wins|b, s0, si , s−i , b−i ) denotes the probability that bidder i with state
si wins contract s0 given the strategy b−i and the state s−i by other bidders; E0

denotes the expectation operator with respect to the contract characteristics s ′0;
and j = 0 indicates that nobody won the auction.
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The Bidding Model:

Any bid exceeding reserve price is rejected.

Assumption of symmetric bidding strategies conditional on state variables implies
that the value function can be written as

W (si , s−i , s0, ci , b−i ) = Wi (s, s0, ci , b−i ) ∀ i

Ex ante value function, value function evaluated before contract characteristics
and bidder i’s cost are known.

Vi (s, b−i ) = E0

∫
Wi (s, s0, c, b−i )f (c|s0, si , s−i )dc

where E0 denotes the expectation with respect to contract characteristics s0. Vi

reflects the expected profits at the beginning of a period before shocks are realized.

The above value function leads to the following recursive equation for Vi (eq 2.1)

Vi (s) = E0[

∫
maxb{[b − c]Pr(i wins|b, s0, si , s−i )

+ β

n∑
j=0

Pr(j wins|b, s0, si , s−i )Vi (ω(s0, s, j))}

× f (c|s0, si , s−i )dc]
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Estimation Method:

Bid distribution function: distribution function of equilibrium bids of i with state
(s0, si , s−i ), and the associated derivative at points less than or equal to R is g(·).
For fringe bidders Gf and gf

The probability that i wins with bid b (Pr(i wins|s0, si , s−i )) equals
Πj 6=i [1− G(b|s0, sj , s−j)] where j includes the seller and other regular and fringes
bidders.

We observe data on bids, contract characteristics, and bidders’ state variables

Goal: Infer privately known costs

The method requires the assumption that observed bids are generated by
equilibrium play and satisfy the FOC of optimal bids

FOC: Let φ(·) denote the unobserved cost associated with a bid, which is a
function of the bid b, the contract characteristics s0, the state vector (si , s−i ), and
the value function Vi .

Let

h(.|s0, si , s−i ) =
g(.|s0, si , s−i )

1− G(.|s0, si , s−i )

denote the hazard function of bids submitted by bidder i when the state equals
(s0, si , s−i ) Def
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Estimation Method:

The FOC for optimal bids yields the following equation for privately known costs φ
(eq 3.1)

φ(b|s0, si , s−i , h,Vi ) = b − 1∑
j 6=i h(b|s0, sj , s−j)

+ β
∑
j 6=i

h(b|s0, sj , s−j)∑
l 6=i h(b|s0−, sl , s−l)

[Vi (w(s0, s, i))− Vi (w(s0, s, j))]

that depends on the bid, the hazard function of bids h, and the value function Vi

The cost equals the bid minus a mark-down.

The mark-down has two components:

1 1rst accounts for the level of competition in the current period.
2 2nd, accounts for the the incremental effect on the future discounted profit if

firm i wins the contract instead of another firm

For fringe bidders, they assign no value to the future Vf = 0 and the second term
vanishes
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Estimation Method:

In order to infer the distribution of costs, we need estimators for:

The transition function of the state (ω(s0, s, j)). It is a given function
The bid hazard function (h(.|s0, si , s−i )). Obtained from the data on
bids, contract characteristics and state variables
The secret reserve price hazard function. Not estimated due to the lack
of data on rejected bids. Assumed to follow a uniform distribution.
The discount factor (β). Treated as given. Check how sensitive the
estimates are to changes in β
The value function (Vi (s)). It involves cost variables that are
unobserved, and decisions by multiple agents, which are endogenous.
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Estimation Method: The Value Function
The key element of the method is the fact that the distribution of equilibrium bids
determines the discounted sum of expected future profits. Thus, there is a
representation of the value function in terms of the distribution of bids only.

Conditional on the states, the bidder chooses the action b that yields the
highest expected net present value of operating profits. The bidder updates
its state variables and made another decision at t+1

Proposition 1: (eq 3.2)

Vi (s) = E0{
∫ R

b

1∑
j 6=i h(·|s0, sj , s−j)

dG (i)(.|s0, s)

+ β

n∑
j=0,j 6=i

[Pr(j wins|s0, si , s−i ) +

∫ R

b

h(.|s0, si , s−i )∑
l 6=i h(.|s0, sl , s−l)

dG (j)(.|s0, s)]

× Vi (ω(s0, s,j))}

The value function has two parts:
1 1st accounts for bidder i ’s current expected profits.
2 2nd part accounts for bidder i ’s sum of discounted expected future payoffs.

Each bidder dynamic game is reduced to a single agent dynamic decision problem
where each bidder maximizes the discounted sum of future payoffs taking as given
the equilibrium bid distribution associated with other bidders.
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Approximation of the value function:

Discretize observed state variables (instead of forward simulation)

We select a grid of state vectors Ŝ = (s1, ..., sm) by drawing 50 states from the
distribution of observed states. We numerically solve eq 3.2 for every bidder on
this grid.

Ai (s) = E0{
∫ R

b

1∑
j 6=i h(.|s0, sj , s−j)

dG (i)(.|s0, s)}

and the 1×m vector of transition probabilities of the events that the states
(s1, ..., sm) are reached when bidder j wins the contract

Bij(s) = E0{
∫ R

b

[1 +
h(.|s0, si , s−i )∑
l 6=i h(.|s0, sl , s−l)

]dG (j)(.|s0, s)× (1ω̂(s0,s,j)=s1 , ..., 1ω̂(s0,s,j)=sm )}

In both expressions, the first expectation is with respect to contract characteristics.

We evaluate the expectation wrt contract characteristics in the following way: we
select a set of contract chars Ŝ0 by randomly drawing 50 contracts from the set of
observed contracts and use the sample average.
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Approximation of the value function:

We evaluate the expectation wrt the bid distribution function by numerical
integration using the estimated derivatives dĜ (i) and dĜ (j).

Using the symbol Ai for current period payoff and Bij for the transition
probabilities, the value function is given by

Vi (s) = Ai (s) + β
∑
j 6=i

Bij(s)Vi

where Vi denotes the vector (Vi (s
1), ...,Vi (s

m))′

The value function can be expressed as

Vi = [I − βBi ]
−1Ai
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Estimation of the cost distribution function

The relationship between the distribution function of costs and the distribution
function of bids is given by F (c|s0, si , s−i ) = G(b(c, s0, si , s−i )|s0, si , s−i ).

The inverse of the bid function conditional on state variables, c = φ(b|s0, si , s−i ) is
given in eq 3.1.
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Bid distribution functions

Estimates of the distribution of equilibrium bids (g(), G())

Parametric specification vs NonParametric

Density function of regular bidders: Use Weibull density. Link

g(b|θ1, θ2, θ3) =
1

b + 1
[
θ1[ln(b + 1)− ln(θ3 + 1)]θ1−1

θ
θ1
2

]exp(−(
ln(b + 1)− ln(θ3 + 1)

θ2

)θ1 )

The support of bids for regular bidders is [θ3,∞). The parameters depend on state
variables.

The density function of bids by fringe bidders follows a beta distribution. Link

gf (b|θ3, θ4, θ5) =
1

R − θ3
(
b − θ3

R − θ3
)θ4−1(

R − b

R − θ3
)θ5−1 1

B(θ4, θ5)

the support of fringe bids is [θ3,R], where R is the upper bound on the floor

θ depends on states
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Bid distribution functions: Likelihood function

Bid data for regular bidders are censored. We only observe bids that are below the
upper bound of the reserve price R t

The likelihood of regular and fringe bids conditional on the initial state s0

L = Πt [Π
nr
i=1[g(bt

i |θit)]o
t
i [1− G(R t |θit)]1−oti Πnt

j=nr +1gf (bt
j |θt)]

where

bti is the bid by regular bidder i on contract t
btj is the bid by fringe bidder j on contract t
ot
i be a dummy variable that equals one if we observe a bid by bidder i
on contract t, and zero otherwise.
θ depends on states

We maximize the logarithm of the likelihood function.

θ∗ = argmaxθ logL
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Estimation Results: Bid Distribution Functions

The estimates suggests that the presence of capacity constraints play an important
role in highway bidding

Miguel Alcobendas Jofre-Bonet & Pesendorfer September 27, 2016 23 / 30



Estimation Results: Bid Distribution Function
Figure 1 shows the bid distribution function between the lower bound of bids and the floor, evaluated at sample average
values of state variables.

On avg, unconstrained bidders are about twice as likely to submit a bid than constrained bidders. This confirms the
importance of capacity constraints

The probability of submitting a bid decreases monotonically in backlog, which is consitent with the notion of capacity
constraints.

Miguel Alcobendas Jofre-Bonet & Pesendorfer September 27, 2016 24 / 30



Estimation Results: Estimates of the Value Function
The state variables entering the value function are: bidder i’s backlog and three vars for each competitor consisting of
the competitor’s backlog, the competitor’s backlog interacted with average distance, and the competitor’s backlog
interacted with average number of plants per region

The plot illustrates the discounted expected future profit of bidder 3 by varying the backlog var of bidder 3 between
−1.6 and 1.6. the competitors’ state variables are fixed at their sample averages. We impose β equal 0.8.

The avg discounted sum of payoffs for bidder 3 equals $25 million. Other regular bidders’ discounted sum of payoffs
ranges between $7 and $73 million.

The effect of backlog on the value function in fig 2 is negative, which is in accordance with the expected effect under
capacity constraints. In Figure 2, backlog reduces the value function in total by about 35%.
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Estimates of costs: Equilibrium bid function

Bid function for bidder 3. The bid function is estimated using eq 3.1 and plotted by fixing the state vars at sample
average values for bidder 3 and varying the cost.

The markup denotes the difference between the bid and the cost of a bidder.

A substantial portion of the markup of regular bidders is attributable to the loss in future discounted value due to
limited capacity. This loss reflects the cost of winning today vs winning later. We can measure this loss based on eq 3.1,
which decomposes the mark-up into two parts: the first part reflects contemporaneous competition. The second part
measures the loss in value of winning today vs winning later. For bidder 3, on avg, across all obs bids, 64.2% of the
markup is attributable to the second part, which is the option value of winning today vs winning later.
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Estimation Results: Estimates of costs

Figure depicts the distribution function of costs for bidder 3. Distributions are reported for two values of backlog and
holding the other state variables at sample average values.

On average the probability that the cost is below a certain threshold is more than twice when the bidder is
unconstrained than when the bidder is constrained.
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The effect of backlog and inefficiencies: Inefficiencies

The benefits of an additional unit of capacity is an important part in the eq that determines the optimal capacity choice
as a function of the returns to capacity and the cost of investing in capacity. (allocation of budgets across different
campaigns)

Due to the presence of inter-temporal effects and due to bidder heterogeneity, a first-price auction need not select the
efficient firm. The bidder with the lowest bid need not be the bidder with the lowest cost. The reason is that
constrained (or smaller) bidders may bid more aggressively than unconstrained (or larger) bidders. The strategic bid
shading can imply that a constrained firm wins although it did not have the lowest cost
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Conclusions

This paper proposes an estimation method for a repeated auction game under the presence of capacity constraints and
bidder asymmetry

use highway procurement auctions in CA

We characterize costs as a function of state variables and illustrate the bidding equilibrium

Bidders that have a large fraction of their capacity committed have on average higher costs than bidders with little
capacity committed

We find that when all bidders are capacity constrained, the resulting price paid by the auctioneer is about 18% higher
than when all regular bidders are unconstrained.

Two policy implications:

1 Scheduling and timing of contracts offered for sale influences the final price. Thus, optimal scheduling taking
the endogeneity of capacity choices into account may save costs.

2 Due to inter-temporal constraints and bidder heterogeneity, an inefficient firm may be chosen. Our experiment
indicates that inefficiencies may arise on about 32% of all contracts and they may amount to 13% of the
expected contract size. Our estimates suggest that auction rules that cope better with inter-temporal effects
and bidder asymmetry could be a cost saving alternative

There are two shortcomings of our estimation method: first, our estimation method relies on the assumptions that
bidders completely understand the auction environment and that our estimates of winning probas correctly capture
bidders’ perceived winning odds.
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Definitions

Hazard Function: The probability of observing an outcome within the neighborhood of of x , conditional on the outcome

being no less than x back
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