# **Empirical Auctions Models**

Miguel Alcobendas

Yahoo!

October 18, 2015

1 / 1

- John Asker, Matthew Shum, Jon Levin Lecture Notes
- Hickman, Hubbard, Saglam: "Structural Econometric Methods in Auctions: A Guide to the Literature"
- Athey and Haile: "Empirical Models of Auctions"
- Athey and Haile: "Nonparametric Approach to Auctions"

#### Reasons for empirical work on auctions

- Validating basic assumptions (the role of asymmetric information -Hendricks and Porter (1988))
- Testing theory: theory makes predictions about how model primitives map to outcomes (Handbook of Experimental Economics)
- Evaluating policy: the optimality of design decisions depends on the properties on the underlying primitives.
  - Uncovering the specific distribution of private information
  - Uncovering the properties of the structure of private information
- Objective: Uncover the underlying distribution of private information.

- Early descriptive work in 1960s and 1970s describing features of bidding for treasure bills, oil leases, timber in national forests
  - Johnson (1979), Hansen (1986) use change in US Forest Service policy to compare revenue in open and sealed bid auctions - results are inconclusive
- Hendricks and Porter (1988) use Milgrom-Weber theory of common value auctions with an informed and uninformed bidder to analyze behavior in "drainage tract" oil lease auctions.
  - They show that bidders owning neighboring tracts make much higher expected profit than de novo bidders with potentially less information.
  - Athey and Levin (2001) use ex post data to test for presence of asymmetric information in timber auctions, and identify gaming of auction rules.

- Paarch's (1992) Stanford dissertation estimates parametric IPV and CV sealed tender models and tests between them.
- Laffont, Ossard and Vuong (1995) show how prices from an ascending auction data can be used to estimate bidder value distributions.
- Guerre, Perrigne and Vuong (2000) show how bid data from sealed bid auctions can be "inverted" to recover bidder value distributions.
- Dozens of papers follow develop and extend this idea to ascending auction data, multi-unit auctions, studies of collusion, market power, etc...

- Henricks and Porter (1988): "An Empirical Study of an Auction with Assymetric Information" - Mineral Rights Model
- Setting: Drainage leases in OCS 1959 69 leases next to tract in which an oil deposit has been discovered
- Symmetry / Asymmetry of information is important for qualitative predictions in CV auctions. Drainage vs Wildcat: drainage is adjacent to known deposit, wildcat is not.
- Research Question: Does the bidding behavior look consistent with a CV model that reflects institutions? Is there evidence of bidding coordination?
- Conclusion: Data are consistent with the predictions of the Bayesian Nash Equilibrium model of bidding in first-price, sealed bid auction with asymmetric information

TABLE 1—SELECTED STATISTICS ON WILDCAT AND DRAINAGE TRACTS<sup>a</sup>

|                             | Wildcat | Drainage |
|-----------------------------|---------|----------|
| Number of Tracts            | 1056    | 144      |
| Number of Tracts Drilled    | 748     | 124      |
| Number of Productive Tracts | 385     | 86       |
| Average Winning Bid         | 2.67    | 5.76     |
|                             | (0.18)  | (1.07)   |
| Average Net Profits         | 1.22    | 4.63     |
|                             | (0.50)  | (1.59)   |
| Average Tract Value         | 5.27    | 13.51    |
| ~                           | (0.64)  | (2.84)   |
| Average Number of Bidders   | 3.46    | 2.73     |

<sup>a</sup>Source: Kenneth Hendricks, Robert Porter, and Bryan Boudreau (1987). Dollar figures are in millions of \$1972. The numbers in parentheses are standard deviations of the sample means.

#### Facts:

- More than twice the average value of wildcat tracts
- There was less competition, and profit was roughly four times higher on drainage tract than on wildcat tract
- Even though drainage tracts had lower risk investments and yielded a significantly higher rate of return, firms were less likely to participate in these auctions.
- The main difference between wildcat and drainage auctions is the distribution of information.
- Neighbor firms likely to be better informed than non-neighbor firms, which, if true, would give them an advantage in bidding agains the latter (Winner's Curse).

 Neighbor firms likely to be better informed than non-neighbor firms, which, if true, would give them an advantage in bidding agains the latter (Winner's Curse).

#### Model:

- Participation and bidding decisions of neighbor firms are better predictors of tract profitability than the ones of non-neighbor firms.
- Neighbor firms won most of the profitable drainage tracts. By contrast, non-neighbor firms earned approx zero profits.
- Data are consistent with predictions of the Bayesian Nash equilibrium model of bidding in first-price, sealed bid auction with asymmetric information.

- Solve by looking for BNE
- Comparative statics that come out of the model that are taken to data:
  - The event that no neighbor firms bids occurs less frequently than the event that no non-neighbor firm bids
  - The neighbor firm wins at least one half of the tracts
  - Expected profits to non-neighbor firms are zero. They are negative on the set of tracts where no neighbor firm bids, and positive on the set of tracts where the neighbor firm bids
  - Expected profits to the neighbor firm incorporates an information premium which makes its earnings above "average"
  - The bidding strategy of the neighbor firm is independent of the number of non-neighbor firms
  - The bidding strategy of the neighbor firm is an increasing function of the public signal, when a larger signal is "good news"

- Federal lands off the coasts of Louisiana and Texas which were leased between 1959 and 1969.
- The government auctioned 144 tracts
- Each lease is sold via first-price, sealed bid auction.
- The government may participate in the auction in two ways:
  - Reservation price (around \$25 per acre)
  - Right to reject the high bid on a tract if it believes the bid is too low

19

No. of tracts

• Distribution of neighbor firms per drainage tract and dist. of bids

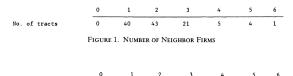



FIGURE 2. NUMBER OF NEIGHBOR BIDS

Table 2—Definition of Variables<sup>a</sup>

|                                               | Mean  | Standard Deviation |
|-----------------------------------------------|-------|--------------------|
| B <sub>t</sub> : maximum bid by neighbor      | 3.78  | 11.52              |
| B <sub>1/</sub> : maximum bid by non-neighbor | 3.60  | 9.57               |
| N <sub>t</sub> : number of neighbor bids      | 1.00  | 0.67               |
| $N_{IJ}$ : number of non-neighbor bids        | 1.69  | 2.09               |
| N: number of neighbor tracts                  | 3.01  | 1.98               |
| NF: number of neighbor firms                  | 2.06  | 1.08               |
| π: ex post tract gross profitability          | 8.75  | 20.83              |
| V: ex post gross profits of adjacent tract    | 14.51 | 20.16              |
| A: tract acreage                              | 2.679 | 1.533              |

<sup>&</sup>lt;sup>a</sup>Dollar figures are in millions of \$1972. Tract acreage is in thousands of acres.

• PI of the neighbor firms is the gross profits of the tract  $(\pi)$ 

Miguel Alcobendas Empirical Auctions October 18, 2015 12 / 1

TABLE 3—SAMPLE STATISTICS ON TRACTS WON BY EACH TYPE OF FIRM<sup>a</sup>

|                          | Wins by<br>Neighbor Firms |        | Wins by<br>Non-Neighbor Firms |        |        |
|--------------------------|---------------------------|--------|-------------------------------|--------|--------|
|                          | A                         | Total  | В                             | С      | Total  |
| No. of Tracts            | 35                        | 59     | 19                            | 36     | 55     |
| No. of Tracts Drilled    | 23                        | 47     | 18                            | 33     | 51     |
| No. of Productive Tracts | 16                        | 36     | 12                            | 19     | 31     |
| Average Winning Bid      | 3.28                      | 6.04   | 2.15                          | 6.30   | 4.87   |
|                          | (0.56)                    | (2.00) | (0.67)                        | (1.31) | (0.92) |
| Average Gross Profits    | 10.05                     | 12.75  | -0.54                         | 7.08   | 4.45   |
| · ·                      | (3.91)                    | (3.21) | (0.47)                        | (2.95) | (1.99) |
| Average Net Profits      | 6.76                      | 6.71   | $-2.69^{'}$                   | 0.78   | -0.42  |
|                          | (3.02)                    | (2.69) | (0.86)                        | (2.64) | (1.76) |

<sup>&</sup>lt;sup>a</sup>Dollar figures are in millions of \$1972. The numbers in parentheses are the standard deviations of the sample means. Column A refers to tracts which received no non-neighbor firm bid, column B refers to tracts which received no neighbor bid, and column C to those in which a neighbor firm bid, but a non-neighbor firm won the tract.

#### Bidding Coordination

TABLE 4—THE EFFECT OF NEIGHBOR FIRM COMPETITION ON NEIGHBOR FIRM PARTICIPATION AND PROFITS<sup>a</sup>

|                                    | Single Neighbor<br>Tracts | Multiple Neighbor Tracts<br>No. of Neighbor Bids |          |         |
|------------------------------------|---------------------------|--------------------------------------------------|----------|---------|
|                                    |                           | -1                                               | ≥ 2      | Total   |
| No. of Tracts                      | 40                        | 48                                               | 15       | 74      |
| No. of Tracts with No Neighbor Bid | 8                         | -                                                |          | 11      |
| No. of Wins                        | 19                        | 29                                               | 11       | 40      |
| Average Winning Bid                | 4.795                     | 2.615                                            | 17.193   | 6.624   |
| of Neighbor Firm                   | (1.444)                   | (0.697)                                          | (9.953)  | (2.885) |
| Average Gross Profits              | 13.601                    | 4.670                                            | 32.597   | 12.350  |
| of Neighbor Firm                   | (5.608)                   | (2.148)                                          | (11.506) | (3.965) |
| Average Net Profits                | 8.806                     | 2.055                                            | 15.404   | 5.725   |
| of Neighbor Firm                   | (4.762)                   | (1.690)                                          | (10.963) | (3.297) |

<sup>&</sup>lt;sup>a</sup>Dollar figures are in millions of \$1972. The numbers in parentheses are the standard deviations of the sample means.

Likelihood Function

Reduce Form Equation

$$Y_{it} = W_{it}\theta_i + \epsilon_{it}$$
  $i = I, U$   $t = 1, ..., T$ 

where  $W_{it}$  is a vector of regressors for tract t,  $\{\epsilon_{It}, \epsilon_{Ut}\} \sim \mathcal{N}(0, \{\sigma_I^2, \sigma_u^2, \sigma_{IU}\})$ 

• Dependent variable  $Y_{it}$ 

$$log(B_{it}|R_t) = Y_{it}$$
 if  $Y_{it} \ge 0$ , 0 Otherwise

where  $R_t$  is the reservation price on tract t

• Bids are assumed to be log normally distributed

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

Likelihood Function

Log Likelihood Function

$$\label{eq:log_loss} \textit{Log} \ \ \textit{L} = \sum_{t \in \Omega_{++}} \textit{I}_{1t} + \sum_{t \in \Omega_{+0}} \textit{I}_{2t} + \sum_{t \in \Omega_{0+}} \textit{I}_{3t}$$

where

$$I_{1t} = -[log(2\pi) + (1/2)log|\Sigma|] - (1/2)(\epsilon_{It}, \epsilon_{Ut})\Sigma^{-1}(\epsilon_{It}, \epsilon_{Ut})'$$
$$-log(1 - Z(-W_{Ut}\theta_U/\sigma_U, W_{It}\theta_I/\sigma_I; \rho_{IU}))$$

Estimation

$$\min_{\theta,\sigma} -Log L$$

- (ロ) (個) (差) (差) (差) (2) (2) (2)

• Theory: Conditioning solely on public info. the dist. of the informed bid and maximum uninformed bid should be approx. the same

TABLE 6—JOINT DISTRIBUTION OF BIDS CONDITIONAL ON PUBLIC INFORMATION<sup>a</sup>

|                                                                  | Unres                                | Restricted                    |                                                                                                   |  |
|------------------------------------------------------------------|--------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------|--|
| Independent<br>Variable                                          | Dependen $\log(B_I/R)$               | t Variable $\log(B_U/R)$      | Dependent Variable log(BID/R)                                                                     |  |
| Constant                                                         | 1.98068                              | 2.05437                       | - 1.99365                                                                                         |  |
| V                                                                | (3.44)<br>0.07391                    | (2.70)<br>0.00523             | (3.96)<br>0.04966                                                                                 |  |
| $V^2$                                                            | (3.42)<br>- 0.00073                  | (0.19)<br>- 0.00009           | (2.52)<br>- 0.00050                                                                               |  |
| A                                                                | (-2.92)<br>-0.11092                  | (-0.30)<br>0.13285            | (-2.17)<br>-0.02499                                                                               |  |
| N                                                                | (-0.82)<br>-0.08226<br>(-0.74)       | (0.74) $-0.28903$ $(-1.97)$   | (-0.21)<br>-0.14763<br>(-1.51)                                                                    |  |
| $\begin{bmatrix} \sigma_I \\ \rho_{IU} & \sigma_U \end{bmatrix}$ | 2.0151<br>(11.7)<br>0.1034<br>(0.94) | 2.6596<br>(12.7)<br>- 428.895 | $\begin{bmatrix} 2.0528 \\ (11.5) \\ 0.0638 \\ (0.57) \\ (12.8) \end{bmatrix}$ $Log L = -434.184$ |  |

<sup>&</sup>lt;sup>a</sup>Asymptotic *t*-statistics are in parentheses. They are computed from the analytic second derivatives. They are not appreciably different from the Eicker-White *t*-statistics.

Miguel Alcobendas Empirical Auctions October 18, 2015 17 / 1

 Theory: Conditioning solely on public info. and PI (tract profits) the dist. of the informed bid and maximum uninformed bid should differ

TABLE 7—JOINT DISTRIBUTION OF BIDS CONDITIONAL ON PUBLIC

|                                                       | Unres                                          | Restricted  Dependent Variable log(BID/R) |                   |  |
|-------------------------------------------------------|------------------------------------------------|-------------------------------------------|-------------------|--|
| Independent<br>Variable                               | Dependent Variable $\log(B_t/R)$ $\log(B_t/R)$ |                                           |                   |  |
| Constant                                              | 1.86237                                        | 2.07435                                   | 1.88962           |  |
| Constant                                              | (4.15)                                         | (2.42)                                    | (4.63)            |  |
| 7                                                     | 0.09102                                        | 0.02765                                   | 0.07532           |  |
| •                                                     | (4.30)                                         | (0.79)                                    | (3.93)            |  |
| 72                                                    | -0.00053                                       | -0.00026                                  | - 0.00046         |  |
|                                                       | (-2.12)                                        | (-0.62)                                   | (-2.09)           |  |
| V                                                     | 0.04428 -0.00323                               |                                           | 0.03361           |  |
|                                                       | (2.55)                                         | (-0.12)                                   | (2.05)            |  |
| /2                                                    | -0.00045                                       | -0.00001                                  | -0.00036          |  |
|                                                       | (-2.25)                                        | (-0.03)                                   | (-1.80)           |  |
| 1                                                     | -0.20962                                       | 0.10221                                   | -0.13419          |  |
| •                                                     | (-1.95)                                        | (0.58)                                    | (-1.34)           |  |
| V                                                     | -0.00888                                       | - 0.25858                                 | -0.06645          |  |
|                                                       | (-0.10)                                        | (-1.81)                                   | (-0.83)           |  |
|                                                       | Γ1.5996                                        | 7                                         | [ 1.6379          |  |
| Γσ. 1                                                 | (11.5)                                         | 1                                         | (11.3)            |  |
| $\begin{bmatrix} \sigma_I \\ \rho_{IU} \end{bmatrix}$ | 0.0492                                         | 2.6162                                    | -0.0216 2.8014    |  |
| P10 "0]                                               |                                                |                                           |                   |  |
|                                                       | (0.46)                                         | (13.1)                                    | (-0.20) (11.8)    |  |
|                                                       | Log L = -                                      | - 409.0028                                | Log L = -418.9243 |  |

<sup>&</sup>lt;sup>a</sup>Asymptotic t-statistics are in parentheses. They are computed from the analytic second derivatives.



• Theory:  $N_U$  should have no explanatory power on the informed bid equation

TABLE 8-BID EQUATIONS<sup>a</sup>

|                        | Equati        | on (1)             | Equation (2)      |                    | Equation (3)      |                    |  |
|------------------------|---------------|--------------------|-------------------|--------------------|-------------------|--------------------|--|
| Independent            | Dependen      | Dependent Variable |                   | Dependent Variable |                   | Dependent Variable |  |
| Variable               | $\log(B_I/R)$ | $\log(B_U/R)$      | $\log(B_I/R)$     | $\log(B_U/R)$      | $\log(B_I/R)$     | $\log(B_U/R)$      |  |
| Constant               | 1.86973       | 2.13073            | 1.64933           | 2.15018            | 1.67785           | 0.064395           |  |
|                        | (-4.19)       | (2.90)             | (3.52)            | (2.96)             | (3.66)            | (1.14)             |  |
| $\pi$                  | 0.08967       |                    | 0.08505           |                    | 0.08501           |                    |  |
|                        | (4.26)        |                    | (4.09)            |                    | (4.08)            |                    |  |
| $\pi^2$                | -0.00051      |                    | -0.00047          |                    | -0.00047          |                    |  |
|                        | (-2.04)       |                    | (-1.88)           |                    | (-1.88)           |                    |  |
| V                      | 0.04452       | 0.00257            | 0.04814           | 0.00120            | 0.04757           | 0.02083            |  |
|                        | (2.58)        | (0.10)             | (2.82)            | (0.04)             | (2.79)            | (1.08)             |  |
| $V^2$                  | -0.00045      | -0.00006           | -0.00047          | -0.00005           | -0.00046          | -0.00011           |  |
|                        | (-2.25)       | (-0.21)            | (-2.47)           | (-0.18)            | (-2.42)           | (-0.58)            |  |
| A                      | -0.20738      | 0.12154            | -0.25435          | 0.12908            | -0.25713          | -0.22645           |  |
|                        | (-1.95)       | (0.68)             | (-2.32)           | (0.74)             | (-2.38)           | (-1.71)            |  |
| N                      | -0.01001      | -0.27341           | 0.03228           | -0.27116           | 0.03506           | 0.03029            |  |
|                        | (-0.12)       | (-1.92)            | (0.36)            | (-1.93)            | (0.41)            | (0.28)             |  |
| $N_U$                  |               |                    | 0.13505           |                    | 0.11312           | 0.83705            |  |
|                        |               |                    | (1.26)            |                    | (1.42)            | (8.48)             |  |
|                        | Γ 1.5956      | 7                  | [ 1.5664          | 1                  | Γ 1.5663          | 7                  |  |
| [ σ, ]                 | (11.5)        |                    | (11.3)            | 1                  | (11.5)            |                    |  |
| $\rho_{UI} = \sigma_U$ | 0.0453        | 2.6238             | -0.0782           | 2.6101             | -0.0576           | 1.8769             |  |
| ["01 "0]               |               |                    |                   |                    |                   |                    |  |
|                        | (0.43)        | (13.0)             | [ (-0.62)         | (13.0)             | [ (-0.56)         | (13.0)             |  |
|                        | Log  L = -    | 409.3745           | Log L = -408.6295 |                    | Log L = -378.5628 |                    |  |

<sup>&</sup>lt;sup>a</sup>Asymptotic t-statistics are displayed in brackets. They are computed from the analytic second derivatives.



# Structural Models: Guerre, Perrigne, and Vuong (1995)

FPSB with Independent Private Values

- Bidders 1, ..., N draw independent private values from F
- Data consist of bids  $b_{1t}, \dots, b_{Nt}$  from T auctions
- Define:

$$G_i(b) = Pr(\max_{j \neq i} b_j \leq b_i) = Pr(b_i \text{ is winning bid}) = F(v)$$

• Bidder i's problem:

$$max_{b_i}(v_i - b_i)G_i(b)$$

• In equilibrium, we must have:

$$b_i = v_i - \frac{G_i(b_i)}{(n-1)g_i(b_i)}$$

- 4 ロ ト 4 昼 ト 4 種 ト 4 種 ト ■ 9 Q (C)

# Structural Models: Guerre, Perrigne, and Vuong (1995)

FPSB with Independent Private Values

- Data consist of bids  $b_{1t}, \dots, b_{Nt}$  from T auctions
- Fix a bidder i. Use observed bids to construct

$$G_i(b) = Pr(max_{j \neq i}b_j \leq b_i) = \Pi_{j \neq i}Pr(b_j \leq b_i|X_t)$$

• Use equilibrium condition to recover  $v_i$ 's

$$\hat{v}_{it} = b_{it} + \frac{\hat{G}_i(b_i)}{(n-1)\hat{g}_i(b_i)}$$

- The RHS can be estimate from the data: G and g can be estimated nonparametrically
- Does not require bidder symmetry, and can be extended to allow each auction to have different "characteristics"  $x_t$ , so  $\hat{G}_i(b_i|x_t)$ , or to allow for correlated bids/values.

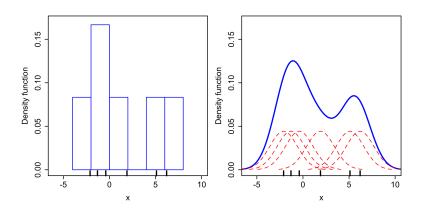
Miguel Alcobendas Empirical Auctions October 18, 2015 21 / 1

## Structural Models: Guerre, Perrigne, and Vuong (1995)

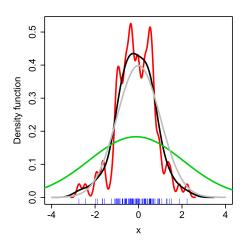
FPSB with Independent Private Values

$$\hat{g}(b) = \frac{1}{T \times n} \sum_{t=1}^{T} \sum_{i=1}^{n} \frac{1}{h} \mathcal{K}(\frac{b - b_{it}}{h})$$

$$\hat{G}(b) = \frac{1}{T \times n} \sum_{t=1}^{T} \sum_{i=1}^{n} 1(b_{it} \leq b)$$


where  $\mathcal{K}$  is a kernel function (for instance normal). Hence, Guerre, Perrigne, and Vuong recommend a two-step approach to estimate the valuation distribution f(v)

- 1 In the first step, estimate G(b) and g(b) nonparametrically
- ② In the second step, estimate f(u) by using kernel density estimator of recovered valuations


$$\hat{f}(v) = \frac{1}{T \times n} \sum_{t=1}^{T} \sum_{i=1}^{n} \frac{1}{h} \mathcal{K}(\frac{v - \hat{v}_{it}}{h})$$

Miguel Alcobendas Empirical Auctions October 18, 2015 22 / 1

# Structural Models: Guerre, Perrigne, and Vuong (1995) Normal Kernel



# Structural Models: Guerre, Perrigne, and Vuong (1995) Bandwith

