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Dynamic Models: Applications

Fancy word in machine learning −−− > ”Reinforcement Learning”

Interactions between ads and content from user’s perspective

Model search behavior (allocation of a sequence of ads)

Repeated clicks on the same search page (title, sitelinks,...)

Counterfactuals: Welfare Analysis

Advertiser behavior: bidding, budgeting, exit

Miguel Alcobendas February 18, 2018 2 / 8



Structural Estimation of Markov Decision Processes:

MDP provides a framework for modelling sequential decision making under
uncertainty

Two type of variables over period t = 0, 1, ...,T :

State variables: st = (xt , ε). xt observed by the econometrician part and εt
observed only by the agent
Control variables dt : Discrete decision process (DDP) vs Continuous
Decision Process (CDP)

Agent represented by a set of primitives (u, p, β)

u(st , dt) represents the agent’s preferences at time t
p(st+1|st , dt) is a Markov transition probability representing the agent’s
belief about uncertain future states
β utility discount factor
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Structural Estimation of Markov Decision Processes:

Rational agents behaving according to an optimal decision rule dt = δ(st) that
solves

V T
0 (s) = maxδEδ{

T∑
t=0

βtu(st , dt)|s0 = s}

where Eδ expectation wrt the stochastic process {st , dt} induced by the decision
rule δ

The Markov Decision Process can be solved using Dynamic Programing

In periods t = 0, 1, ...,T the value Vt functions are recursively defined by

Vt(st) = maxdt∈Dt (st ){ut(st , dt) + β

∫
Vt+1[st+1,δt+1(st+1)]pt+1(dst+1|st , dt)}

and the policy function δt solves the previous equation
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Structural Estimation of Markov Decision Processes:

Additive Separability Assumption (AS)

u(s, d) = u(x , d) + ε(d)

Conditional Independence Assumption (CI)
The transition density of the controlled Markov process {xt , εt} factors as

p(dxt+1, dεt+1|xt , εt , dt) = q(dεt+1|xt+1)π(dxt+1|xt , dt)

comments:

1 xt+1 is a sufficient statistic for εt+1. Dependence between εt and εt+1 is
transmitted through observed xt+1

2 xt+1 depends on xt not on εt

Under AS and CI assumptions, the Bellman’s equation has the form

v(x , ε) = u(x , d) + β

∫
maxd′∈D(y)[v(y , d ′) + ε(d ′)]q(dε|y)π(y |x , d)
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Structural Estimation of Markov Decision Processes:

If {st , dt} is a DDP satisfying AS, CI and other regularity conditions, then the
controlled process {xt , εt} is Markovian with transition probability

Pr{dxt+1, dt+1|xt , dt} = P(dt+1|xt+1)π(dxt+1|xt , dt)

Given panel data {xa
t , d

a
t } on observed states and decisions of a collection of

agents, the max likelihood estimator θ̂f is

θ̂f = argmaxθL
f (θ) =

A∏
a=1

Ta∏
t=1

P(da
t |xa

t , θ)π(xa
t |xa

t−1, d
a
t−1, θ)

In practice, we use a two step model

θ̂p1 = argmaxθ1L
p
1(θ1) =

A∏
a=1

Ta∏
t=1

π(xa
t |xa

t−1, d
a
t−1, θ)

θ̂p2 = argmaxθ2L
p
2(θ̂p1 , θ2) =

A∏
a=1

Ta∏
t=1

P(da
t |xa

t , θ̂
p
1 , θ2)
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Structural Estimation of Markov Decision Processes:

Assumptions:

q(dε|x) is a multivariate extreme-value distribution. Then

q(dε|x) =
∏

d∈D(x)

exp{−ε(d) + γ}exp[−exp{−ε(d) + γ}]

P(d |x) follows a multinomial logit formula

Then

vt(x , d) = ut(x , d) + β

∫
log [

∑
d′∈D(y)

exp[vt+1(y , d ′)]]πt(dy |x , d)

and

P(d |x) =
exp[v(x , d)]∑

l∈D(x) exp[v(x , l)]
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Structural Estimation of Markov Decision Processes:

In finite-horizon Markov Decision Processes MDP, the value functions are
computed using backward recursion

Step 1:

vT (x , d) = uT (x , d)

Step 2:

vt(x , d) = ut(x , d) + β

∫
log [

∑
d′∈D(y)

exp[vt+1(y , d ′)]]πt(dy |x , d)
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