Squashing

Miguel

Yahoo!

March 18, 2018

References:

- "Multi-score Position Auctions" (Charles et al. (2016) WSDM'16)
- "Revenue Analysis of a Family of Ranking Rules for Keyword Auctions" (Lahaie and Pennock (2007) EC'07)
- "A Structural Model of Sponsored Search Advertising Auctions" (Athey and Nekipelov (2011) Working Paper)

Squashing + GSP:

- Let $b_{1}, b_{2}, \ldots, b_{1}$ advertisers bids
- Let $s_{1}^{\theta}, s_{2}^{\theta}, \ldots, s_{l}^{\theta}$ scores
- s_{i} : clickability measure
- θ : squashing factor

Squashing + GSP:

- Let $b_{1}, b_{2}, \ldots, b_{l}$ advertisers bids
- Let $s_{1}^{\theta}, s_{2}^{\theta}, \ldots, s_{l}^{\theta}$ scores
- s_{i} : clickability measure
- θ : squashing factor
- GSP ranking
- Order ads based on $s_{i} \times b_{i}$
- GSP + Squashing ranking
- Order ads based on $s_{i}^{\theta} \times b_{i}$

Squashing + GSP:

- Let $b_{1}, b_{2}, \ldots, b_{l}$ advertisers bids
- Let $s_{1}^{\theta}, s_{2}^{\theta}, \ldots, s_{l}^{\theta}$ scores
- s_{i} : clickability measure
- θ : squashing factor
- GSP ranking
- Order ads based on $s_{i} \times b_{i}$
- GSP + Squashing ranking
- Order ads based on $s_{i}^{\theta} \times b_{i}$
- Pricing: let $s_{1}^{\theta} \times b_{1}>s_{2}^{\theta} \times b_{2}$. Then

$$
\text { Price }_{1}=\frac{b_{2} \times s_{2}^{\theta}}{s_{1}^{\theta}}
$$

- If $\theta=0$ then Price $_{1}=b_{2}$
- If $\theta=1$ then Price $_{1}=b_{2} \times s_{2} / s_{1}$

Squashing + GSP:

- Let $b_{1}, b_{2}, \ldots, b_{l}$ advertisers bids
- Let $s_{1}^{\theta}, s_{2}^{\theta}, \ldots, s_{l}^{\theta}$ scores
- s_{i} : clickability measure
- θ : squashing factor
- GSP ranking
- Order ads based on $s_{i} \times b_{i}$
- GSP + Squashing ranking
- Order ads based on $s_{i}^{\theta} \times b_{i}$
- Pricing: let $s_{1}^{\theta} \times b_{1}>s_{2}^{\theta} \times b_{2}$. Then

$$
\text { Price }_{1}=\frac{b_{2} \times s_{2}^{\theta}}{s_{1}^{\theta}}
$$

- If $\theta=0$ then Price $_{1}=b_{2}$
- If $\theta=1$ then Price $_{1}=b_{2} \times s_{2} / s_{1}$
- Expected Cost : eCost ${ }_{1}=$ Price $_{1} \times$ CTR $_{1}$.

Revenue Impact: Scenario 1

- GSP order $=$ Squashed GSP order $=$ Click-probability order
- 2 bidders and zero reserve price

Revenue Impact: Scenario 1

- GSP order = Squashed GSP order = Click-probability order
- 2 bidders and zero reserve price

Bid1 \& Bid2 $=\mathbf{\$ 1 , e C T R 1 = 0 . 5 , e C T R 2 = 0 . 3 3}$

Revenue Impact: Scenario 2

- GSP order $=$ Squashed GSP order \neq Click-probability order
- 2 bidders and zero reserve price

Revenue Impact: Scenario 2

- GSP order $=$ Squashed GSP order \neq Click-probability order
- 2 bidders and zero reserve price

Bid1=\$10,Bid2 = \$1,eCTR1=0.5,eCTR2=0.66

Revenue Impact: Scenario 3

- GSP order $=$ Click-probability order \neq Squashed GSP order
- 2 bidders and zero reserve price

Revenue Impact: Scenario 3

- GSP order $=$ Click-probability order \neq Squashed GSP order
- 2 bidders and zero reserve price

Bid1=\$1,Bid2 = \$1.6,eCTR1=0.5,eCTR2=0.17

