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Abstract. We discuss the modification in 2008 of the U.S. policy that regulates airport

rates and charges. Under the new regulatory framework, airports can charge a two-part

landing fee to relieve congestion. Such a landing fee scheme consists of the standard air-

craft weight-based charge plus an operation charge applied in peak hours. The question is

relevant, since flight delay is a serious problem in the U.S. economy and, so far, no airport

has put into practice this type of charging scheme. We develop and estimate a structural

model to investigate the consequences of implementing such a two-part landing fee at San

Francisco International Airport. Our simulations suggest the higher the operation charge,

the lower are the number of flights arriving during peak hours and the bigger are the sizes of

aircraft. As a result, the level of congestion and total demand at San Francisco International

Airport decrease.

Our model captures important characteristics of the airline industry that most of the

previous literature has neglected: endogeneity of airport charges with respect to decisions

of travelers and carriers, correlation across markets, and two decision variables of airlines

(ticket price and flight frequency).

Keywords: Airport congestion, landing fees, airline industry, structural IO, regulation and

industrial policy

1. Introduction

Airport congestion has been object of study since air-traffic growth has led a number of

airports to operate at maximum capacity. There exists an important debate about how to manage

and reduce the resulting flight delays. The U.S. Department of Transportation (DoT) is aware
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of this problem. For that reason, in 2008 the DoT introduced three amendments to the 1996

“Policy Regarding the Establishment of Airport Rates and Charges”, a statement that sets the

standards applicable to fees imposed for aeronautical use of airports. These amendments provide

airports with a new set of tools to reduce flight delays without being in conflict with the regulatory

framework. With these modifications, the DoT explicitly authorizes airports to impose a two-part

landing fee scheme, consisting of both a congestion-based flight operation charge and an aircraft

weight-based charge, in lieu of the standard weight-based charge. The current landing fee scheme is

based on the weight of aircraft and bears no relationship to the level of airport congestion. Hence,

airport operators cannot use it to give airlines incentives to reduce the number of scheduled flights

during peak periods.1 The new policy lets airports charge different prices depending on their level

of congestion. According to the DoT (FR 73, No 135, July 14, 2008), this tool would let airports

divert traffic to less congested hours, while increasing the size of the aircraft.

The objective of this paper is to analyze the consequences of implementing such a two-part

landing fee at the San Francisco International Airport (SFO). Using data from the third quarter of

2006, we study the equilibrium behavior of travelers and carriers when we introduce a peak-hour

charge to supplement the current weight-based landing fee scheme. In particular, we investigate

how the congestion charge modifies the number of scheduled landings and the sizes of aircraft,

leading to changes in flight delays at SFO. To conduct the analysis, we develop and estimate a

structural model of air-travel demand and carrier supply using an extension of the work presented

by Alcobendas (2014). This extension allows us to introduce changes in the airport landing fee

scheme.

So far, no U.S. airport has put into practice this type of charging scheme. From comments

previous to the implementation of the amendments (FR-73, No12, January 17, 2008), it is clear

that airport managers and airlines disagree about the desirability of this new regulatory framework.

While airport operators welcome these modifications, airlines argue that the amendments allow

airports to charge unreasonable and discriminatory fees, and they are not compatible with the

federal law.2 These differences in preferences may explain why a new pricing methodology has not

yet been implemented. Moreover the policy statement is just a guideline and specific rules are not

1The new regulation also permits airports to include in the peak-hours charge a portion of the costs of an

airfield project under construction. Previously, only the costs of fully operational facilities could be taken into

account. The last amendment lets peak-hour landing fees include airfield costs of other underutilized airports

owned by the same proprietor, with the objective of diverting operations from congested to underutilized

airports. For instance, Los Angeles International (LAX) and Ontario International (ONT) Airports are

owned by Los Angeles World Airports. With the new regulation, LAX landing fees could include a portion

of the costs of operating ONT to relieve LAX congestion and promote the use of ONT.
2On behalf of the U.S. airlines, the Air-Transport Association of America (ATA) appealed the DoT

amendments and claimed that they are not legal under the federal law. However, the United States Court

of Appeals for the District of Columbia Circuit denied the appeal.
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imposed. Thus, each airport directly negotiates with carriers over the charging scheme for using its

infrastructure. Airports and airlines usually set contracts called “Airport-Carrier Lease and Use

Agreements” that carriers may be reluctant to change.3 In addition, the new guidelines arrived at

the same time as the economic crisis reduced air-travel demand, allowing airports to postpone the

decision of whether to impose this new mechanism. However, demand is reaching pre-crisis levels,

leading policymakers, carriers and airport operators to discuss again the necessity of introducing

measures to control congestion.

There exist other alternatives to reduce flight delays at airports. For example, airports can

relieve congestion by improving their infrastructure to accommodate more flight operations (e.g.

constructing new runways, new terminals, or air-traffic control technology upgrades). However,

this solution is not always feasible due to, for instance, budget limitations, space constraints, noise

and environmental regulations, or opposition of cities surrounding the airport.4 Moreover, this

type of measure needs time to be implemented and it would not solve current problems. Another

solution is to implement mechanisms to rationalize the use of airports by imposing administrative

rules to constrain the number of operations per hour (e.g. slot constraints as at John F. Kennedy

International or Ronald Reagan National airports). As Borenstein (1988) points out, such measures

face the problem of how to allocate the slots and how to avoid creating barriers to entry. Finally and

closely related with the DoT’s amendments, policies based on the concept of “optimal congestion

pricing” can be used to determine the price that an aircraft should pay for operating at a congested

airport. With this price mechanism, the landing fees paid by airlines vary with the level of airport

congestion. How to optimally compute and implement this type of charge is still under discussion

by scholars and policymakers.

Several reasons explain the convenience of choosing the SFO airport. First, SFO meets the re-

quirements imposed by the Federal Aviation Administration (FAA) to be considered as a congested

airport, thus being eligible to implement a two-part tariff charge scheme.5 Second, SFO has one

of the lowest-performing arrival rates of the national hubs due to a combination of foggy weather

conditions and heavy airline traffic during peak hours. If we look at Figure 1, the dash-dotted

3The Airport Cooperative Research Program (ACRP) defines Airport-Airline Use and Lease Agreement

as an “agreement that specifies the financial obligations, terms of use, and other responsibilities that each

party assumes with respect to the use of the airport’s facilities. The Agreement sets the commencement and

termination dates for the use of airport facilities, identifies the facilities to be used and the degree of use, the

rate-making methodology, and defines the approved uses of the facility”
4The cost of constructing a new runway or terminal is very high. For example, the third runway at

Seattle-Tacoma International Airport cost $1.1 billion, and the London-Heathrow Terminal 5 $6.42 billion.
5According to the “Policy Regarding the Establishment of Airport Rates and Charges”, the U.S. Depart-

ment of Transportation (DoT) “considers a currently congested airport to be:

(1) An airport at which the number of operating delays is one per cent or more of the total operating

delays at the 55 airports with the highest number of operating delays; or
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line represents the average delay of arriving flights during the day.6 There are two peaks, one in

the morning and another in the evening. If we compare this line with the distribution of arrivals

during the day (continuous line in Figure 1), we observe a positive correlation between the number

of arrivals and delays.7 The existence of peaks and valleys through the day may justify the use of

a congestion charge, since a higher landing fee in peak hours may affect the distribution of flight

frequency during the day. Carriers may decide to eliminate or reschedule the less profitable flights

to less congested hours. Last, our empirical application uses several data-sets that are available

for different U.S. airports. Nevertheless, we also use a unique survey done in 2006 by the Metro-

politan Transportation Commission of the San Francisco Bay (MTC), which provides important

demographic information on travelers using SFO that is very useful for the estimation of model

parameters.

As we will see later, there are substantial differences between our study and previous work

addressing the airport congestion problem. Zhang and Czerny (2012) present an excellent review

of recent research about this topic. While there exists extensive theoretical work, empirical papers

are scarce, mainly because congestion charges are not currently levied. Most of the existing papers

use data to simulate the consequences of imposing congestion fees. They usually rely on previous

literature developed to study road congestion. Daniel (1995, 2001) presents a stochastic-bottleneck

model to simulate the consequences of congestion pricing at the Minneapolis-Saint Paul airport.

Johnson and Savage (2006) and Ashley and Savage (2008) also apply a bottleneck model to simulate

the effects on Chicago O’Hare International airport. Those models impose a time-varying congestion

fee equivalent to the congestion cost that each aircraft imposes on all others.

Other related empirical work focuses on testing if a carrier with market power at an airport

internalizes the congestion that each flight imposes on the other flights it operates. The question

is relevant because it has big implications for the design of the optimal congestion fee. In spite of

that, the answer is not clear. While the aforementioned papers by Daniel (1995, 2001) and Daniel

and Harback (2008) claim that airlines do not internalize delays, Brueckner (2002) and Mayer and

Sinai (2003) find evidence that they do. Morrison and Winston (2007) compare both approaches

(2) An airport identified as congested by the Federal Aviation Administration listed in table 1 of the

FAA’s Airport Capacity Benchmark Report 2004, or the most recent version of the Airport Capacity

Benchmark Report.”

6We define delay as the difference between the shortest observed travel time on a given nonstop route and

the actual travel time of a particular flight (Mayer and Sinai (2003)).
7We approximate the average delays and distribution of arrivals during the day using a Nadaraya-Watson

Kernel with the Silverman Rule-of-Thumb bandwidth (hn), hn = 0.9(min{σ̂, IQR/1.34})N−1/5, where IQR

is the interquartile range (the difference between the 75th and 25th percentile), N is the sample size, and σ̂

is the standard deviation of the sample.
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and evaluate the welfare loss from ignoring internalization in computing congestion charges, finding

that the loss is not large.

Our study is different from the aforementioned work. It is the first one that quantifies the

impact of establishing a two-part landing fee. Furthermore, we use a structural model where air

travel demand and carrier behavior are specified. Earlier work based on bottleneck models does not

explicitly model the preferences of travelers, and this omission is important since the decisions of

carriers (fares, frequency of flights, and size of aircraft) are endogenously determined by travelers’

demand. Another important contribution is the use of game theoretical tools to estimate the flight

costs, while previous work relies on reports or other papers. Our model is easier to implement, since

the two-part landing fee is constructed by using the current scheme applied by SFO and adding a

congestion charge during peak hours. Since the congestion charge is fixed, airlines can anticipate

the consequences of their decisions. This is not the case for bottleneck models, because fees depend

on delays that an aircraft imposes on all others, and this quantity depends on several real time

factors, including the time of the day or weather conditions. This type of endogeneity makes it

difficult for airlines to decide on the frequency and the size of their aircraft, since these choices

must be made well in advance. Finally, while existing related work treats non-congestion charges

as exogenous, we let them be endogenously determined by traveler and carrier behavior.

In our model there are three types of agents: travelers, airlines, and the SFO airport operator.

Travelers are heterogeneous individuals with different locations (origins or destinations) in the San

Francisco Bay who have different tastes. They choose the product that gives them the highest

utility. Carriers choose fares, the frequency and the schedule of their flights taking into account

the level of congestion at SFO during the day. Their decision will be the solution of a profit

maximization problem, which is solved sequentially: carriers first decide on the flight frequency for

peak and off-peak hours, and afterwards the price of tickets. On the other hand, the SFO airport

is compensated by carriers for using its airfield (landing fee) and terminals (rental rate). These

charges and the mechanism to determine them are set by local airport authorities with the objective

to achieve financial self-sufficiency of the airport. They are computed according to a methodology

that depends on traffic, revenues, and costs generated at the airport. While the current landing fees

are established according to the weight of aircraft, the rental rate for using the terminals depends

on the surface leased by each airline. As we will see, both charges are endogenous since they depend

on travel demand, flight frequency, and ticket prices. Airlines take into account such endogeneity

in their decision problem.

The model is solved in two stages: first, we estimate the model to characterize the preferences

of travelers and carriers’ behavior. Second, we modify the landing fee scheme to accommodate a

congestion charge during peak hours. Then, we simulate changes in the equilibrium behavior of

players and analyze variations in air-travel demand, fares, frequency of flights, size of aircraft, and

delays at SFO.

5



As expected, our estimates suggest that travelers prefer to arrive at SFO in the morning or

in the evening. They also prefer direct flights and more frequency. On the other hand, they dislike

delays and their utility decreases with distance from their location (origin or final trip destination

in the Bay Area) to SFO. If we look at the consequences of adding a congestion charge to the

current weight-based landing fee scheme, the higher the charge, the lower is the number of flights

landing at SFO during peak hours. As a consequence, the level of airport congestion decreases. In

addition, the higher the charge, the higher are the incentives of airlines to increase the size of their

planes. The reduction in the number of flights is also accompanied by an increase in fares, leading

to a diminution in air-travel demand during peak-hours. Implementing a congestion charge does

not only affect flights in the peak but also in off-peak hours. Part of the lost air travel demand

in peak hours is diverted to off-peak hours, increasing the frequency of flights operating during

periods of low congestion. However, total demand for SFO decreases. As a result, the weight-based

component of the landing fee goes up, increasing the cost of operating a flight. For instance, if

SFO imposes a congestion charge of 2,000 dollars per arrival during peak hours, the total number

of flights reaching the airport during congested hours decreases by 3.86%, the average delay falls

by 12.16%, the weight of aircraft increases by 9.10%, fares grow 0.30%, and demand for peak hours

products decreases by 4.14%. A 2,000 dollars congestion charge also increases demand during off-

peak periods around 1%, but total demand for SFO decreases by 2.66%, increasing the weight-based

landing fee 2.43%.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 derives

the optimality conditions for carriers. Section 4 explains the application and the data. Section 5

outlines the estimation methodology. Section 6 discusses the estimation results. Section 7 analyzes

the consequences of implementing a peak-hour congestion charge. Section 8 concludes.

2. Model

The model determines the purchasing decisions of travelers as a function of their attributes

and the characteristics of the products offered by carriers. At the same time, carriers’ pricing

and frequency decisions are affected by the landing fees and rental charges levied by SFO. As we

previously mentioned, we modified the model presented by Alcobendas (2014), allowing changes in

the airport landing fee scheme.

In our model, markets are defined as a round trip directional city-pair. For instance, a market

could be the directional pair San Francisco International Airport - Miami International Airport

where San Francisco is the origin and Miami is the destination. This market is different from

Miami International Airport - San Francisco International Airport, where Miami is the origin and

San Francisco is the destination. Within a market, travelers can choose among a set of differentiated

products. We distinguish products according to the combination of their characteristics: fare,
6



distance, frequency of flights, ticketing carrier, frequency of flights, dummy for direct flights, dummy

for slot constrained airports, delays, and scheduled arrival time at SFO (peak or off-peak hours).

2.1. Demand: We assume that the demand for a ticket follows a random coefficient logit repre-

sentation. Such an approach lets us introduce heterogeneity in the demand for tickets. Travelers

have different tastes with respect to product characteristics and they are also heterogeneous with

respect to their incomes and their locations in the Bay Area.

Suppose that we observe t = 1, ..., T markets, with i = 1, ..., It consumers, and j = 1, ..., Jt

products. The utility that a potential traveler i obtains from purchasing product j in market t is

given by

uijt = αpeakÎ
peak
jt + (αp + αyyi + σpνpi )︸ ︷︷ ︸

αip

pjt + (αf + σfνfi )︸ ︷︷ ︸
αif

f̂jt + (αd + σdνdi )︸ ︷︷ ︸
αid

D̂jt + ξjt +(1)

+ λd(Li) + xjtβ + σ0ν0
i + εijt

where

• Îpeakjt is a dummy equal to one if the product is operating during peak hours and zero

otherwise. If the scheduled arrival of the product is in the morning (between 9:00AM

and 12:30PM) or in the evening (between 6:30PM and 10:30PM), the product is

assumed to be offered during peak hours (see Figure 1). In such a case, Ipeakjt = 1,

and it equals zero otherwise.

• pjt is the fare of the product.

• yi is household income, with probability distribution PY .

• f̂jt corresponds to the flight frequency of product jt. It depends on the daily frequency

of flights for connecting and destination airports used by the product.8

• D̂jt is the delay of product jt. It depends on the level of congestion at connecting

and final airports used by the product.9

• xjt is a vector of travel characteristics for product jt. Such characteristics are observed

by the econometrician: a constant, ticketing carrier, flight distance, a dummy for

direct flights, and a dummy for airports with slot constraints.

• ξjt is the unobserved-to-researcher characteristics of product j in market t. An in-

crease in ξjt makes the product jt more attractive to all consumers.

• d(Li) determines the distance of individual i to SFO airport. Li denotes the location

of individual i in the Bay Area, with probability distribution PL. This variable is

8More details are provided in the data section.
9More details are provided in the data section.
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interpreted according to the nature of the traveler. If the individual i is originally

departing from SFO, d(Li) may be considered as the distance from his residence or

work place to the airport. On the other hand, if the traveler is arriving in the Bay

Area, d(Li) is interpreted as the distance from the airport to his final destination (for

instance, hotel or office).

• νpi , νfi , νdi and ν0
i account for the unobserved taste of travelers for fares, frequency,

delays and a constant respectively. We allow interactions between product charac-

teristics and individual tastes to obtain richer patterns of substitution. We assume

that each of these random variables is drawn from a normal distribution except the

ones that interact with prices (νpi ). In this case, the distribution is assumed to be

lognormal.

• εijt is a mean-zero error term, assumed to be i.i.d. across travelers and products and

to follow a type-I extreme value distribution.

The vector of demand parameters to be estimated is denoted by θ and includes: the

taste for product price (αp, αy, σ
p), for arriving at SFO in peak hours (αpeak), for daily

frequency (αf , σ
f ), for delays (αd, σ

d), for other product characteristics β, for distance to

SFO (λ), and the parameter σ0 associated with the constant. Finally, αip, αif and αid are

the individual-specific coefficients linked to fares, frequencies, and delays respectively.

We also use county dummy variables to capture county-specific tastes for products.

Those variables equal one if the traveler comes from (goes to) the specified county and

zero otherwise. Ticket prices (pjt) and flight frequencies (f̂jt) are expected to be correlated

with ξjt. Thus, the use of appropriate instrumental variables will be necessary to avoid

inconsistent estimates.

We distinguish the mean utility level of product j in market t (δjt) from the traveler-

specific deviation (µijt + εijt):

δjt = αpeakÎ
peak
jt + αppjt + αf f̂jt + αdD̂jt + xjtβ + ξjt(2)

µijt = (αyyi + σpνpi )pjt + σfνfi fjt + σdνdiDjt + λd(Li) + σ0ν0
i(3)

Hence, the utility that individual i obtains from product j in market t is equal to

uijt = δjt + µijt + εijt(4)
8



Let ui0t denote the utility from the outside good of not flying from/to SFO. This term

adds flexibility to the discrete choice model since travelers are not obliged to use SFO. They

can decide to fly from alternate airports in the Bay area such as Oakland International or

Mineta San Jose International airports, use another transportation mode as a car or bus, or

not travel at all. This utility is random and is written as

ui0t = εi0t(5)

Once the demand function is specified, the estimation of parameters depends on the

capacity of our model to predict the product market shares. Following Nevo (2001), if we

assume that the idiosyncratic unobservable component of utility εijt is i.i.d. type I extreme

value, the probability that a traveler i chooses alternative j in market t is

P (uijt ≥ uilt, l 6= j/Îpeak, p, f̂ , D̂, x, d, δ, νi, Li, yi, θ) = sijt(p, f, δ(θ); θ) =(6)

=
exp[δjt + µijt]

1 +
∑
m∈Jt

exp[δmt + µimt]
,

where Ipeak, p, f̂ , D̂, x, d, and δ are vectors consisting of the corresponding variables.

Assuming that the distributions of νi, ε, Li, and yi are independent, the model-predicted

market share of product j ∈ Jt is given by

sjt(p, f, δ(θ); θ) =

∫
exp[δjt + µijt]

1 +
∑
m∈Jt

exp[δmt + µimt]
dPν(νi)dPL(Li)dPY (yi) =(7)

=

∫
sijt(p, f, δ(θ); θ)dPν(νi)dPL(Li)dPY (yi)

where Pν(·) is the distribution of the unobservables, PL(·) is the distribution of the locations

of travelers in the Bay Area, and PY (·) is the distribution of household incomes.10

2.2. Carriers and Airport Charges: Airlines are assumed to be profit maximizing firms

with respect to ticket prices, and the frequency and schedule of their flights during the day.

They may operate at SFO during peak and/or off-peak hours. Moreover, they might offer

differentiated products within a market. At the same time, profits depend on the landing

fees and the terminal rental rate levied by the airport.

10Given data limitations, we assume that the distributions of airport distance and household income are

independent. This is clearly not true since some correlation is expected between them.
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The equilibrium concept in the model is the subgame perfect Nash Equilibrium. The

game has two stages: in the first stage, airlines simultaneously decide on the flight frequency

(f) of the last trip segment arriving at SFO in each period (peak, off-peak). In the second

stage, firms decide on fares (p). As we will see later, the size of aircraft will be the result

of the interaction between the optimal decisions regarding fares and frequencies. It is also

important to note that, in our model, airlines only decide the flight frequency of the trip

segment arriving at SFO. This spoke-route is directly affected by the charges levied by SFO.

However, products may be composed of several segments, and we hence implicitly assume

that the frequency decisions for trip segments are independent of each other. We use the

optimality conditions with respect to fares and flight frequencies to estimate the parameters

of the model and analyze the effects of imposing a congestion charge in peak hours.

Let Jct denote the set of products offered by carrier c in market t, and let Ωc denote

the set of spoke-routes used by carrier c that have SFO airport as an endpoint. Individual

spokes are denoted by r, and l denotes the time period of the flight arrival (l = H for peak

hours and l = L for off-peak hours). The optimal decision of airline c will be the solution of

the following profit maximization problem:

max
f

max
p

Πc = max
f

max
p

∑
t∈T

∑
j∈Jft

([pjt −mjt]sjt(p, f, δ(θ); θ)×Mt)−(8)

−
∑
r∈Ωc

∑
l∈{L,H}

f̃lrc(FCostlrc + βdDl(f) + fees(s, p, f)× weightlrc(s, p, f) + ρl︸ ︷︷ ︸
Two-Part Landing Fee

)

︸ ︷︷ ︸
Total Operating Flight Cost

−

− RCc(s, p, f)− Fc

]

where Πc corresponds to profits of airline c (in our application, third quarter of 2006). mjt

represents the product-specific cost for product j in market t. sjt(·) is the previously defined

market share. Mt is the total population that may be interested in traveling in market t, and

equals the geometric mean population of the origin and destination metropolitan statistical

areas.

The term “Total Operating Flight Cost” captures the total airline cost for operating

flights landing at SFO. This term depends on the number of flights (f̃lrc) that the airline

operates on each spoke r during peak (l = H) and off-peak (l = L) hours, the weight-based

landing fee (fees), the congestion charge (ρl), the weight of aircraft (weightlrc), the average

delay incurred at the airport for peak and off-peak hours (Dl), the monetary value of one
10



minute delay (βd), and the undelayed flight cost component (FCostlrc). RCc is the total

rental cost for carrier c in using the terminals of SFO. Finally, Fc is the total fixed cost

incurred by the airline operating at the airport. fees, weightlrc, and RCc are endogenously

determined, depending on market shares, fares and flight frequencies. On the other hand,

Dl only depends on the number of flights operating during period l.

Note that we make a distinction between product delay in the utility function (D̂jt)

and airport delays in the profit function (Dl). While D̂jt takes into account delays at each

of connecting and destination airports used by product jt, Dl refers to the average delay at

SFO in period l.11 Similarly, we distinguish between the daily frequency of product jt (f̂jt),

the daily frequency of flights of a carrier on one particular spoke operating in period l (flrc),

and the total number of operations in the quarter for the carrier on the spoke r and period l

(f̃lrc). While f̂jt takes into account the frequencies for each of the trip segments of airports

used by product jt, flrc only considers the carriers’ flight frequency on spokes arriving at

SFO. Finally, we assume that flrc is the same for all days of the quarter. Consequently, f̃lrc

is equal to flrc times the number of days of the quarter (92 days).

The first line of the profit maximization problem (8) refers to products. On the other

hand, the term “Total Operating Flight Cost” is linked to aircraft operations. This distinc-

tion is important because it is possible that several products share the same aircraft in the

trip segment reaching SFO, even if they belong to different markets. Imagine, for instance,

travelers flying from New York (JFK) to SFO via Boston (BOS) and arriving at SFO during

peak hours. They may share the same aircraft in their last trip segment with travelers flying

non-stop from BOS to SFO and also arriving during peak hours. Moreover, since markets

are defined as round trip directional city-pairs, passengers may share the aircraft and belong

to different markets even if they fly non-stop. That is, people traveling non-stop between any

U.S. city and the Bay Area during the same congested hours may share the same aircraft but

belong to different markets, since they may be residing in the Bay Area or just visiting it.

Hence, the common assumption that markets are independent does not hold in our model.

The optimality conditions will capture this dependence across markets.

The two major reasons for delays are weather conditions and the number of landings

relative to airport capacity. In our case, we assume a deterministic relationship between

the airport delay and the total number of daily flights arriving at the airport. Following

Morrison and Winston (1989, 2007) the delay function is given by

11In our application, the average delay during peak hours is 28 minutes and 45 seconds (DH = 28.75) and

21 minutes and 40 seconds when the airport is operating during off-peak hours (DL = 21.67).
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Dl =


exp(ωdLf̄L) if l = L

exp(ωdHf̄H) if l = H
(9)

where ωdL and ωdH are the congestion parameters, and f̄L and f̄H are the total number of

daily operations in off-peak and peak hours respectively. All three variables appearing in

the expression are the same for all flights landing during the same period. While Dl, f̄L and

f̄H are observed from the data, ωdL and ωdH are computed to ensure that the equalities hold.

As Morrison and Winston (1989, 2007) point out, this specification lets the marginal delay

be an increasing function of the number of operations. It also allows SFO to accommodate

any number of flights in each period with exploding airport delays. By construction, average

delay is a source of dependence across markets. Since changes in the frequency of one product

affect the average congestion at the airport, all products offered during the same period (peak

or off-peak hours) will be affected even if they do not belong to the same market. As we

will see in detail when solving the maximization problem, this effect is considered by carriers

when they decide the frequency of their own flights.

Landing fees have two components, the total weight-based fee (fees × weightlrc) and

the congestion charge per operation (ρl for l ∈ {L,H}). The weight-based landing fee (fees)

is the charge that airlines pay for each 1,000 lbs of maximum gross landing weight (MGLW)

for each arriving aircraft (weightlrc). Remember that each product is a round trip travel that

may have several connections. However, for simplicity the only landing fees that we consider

are the ones levied by SFO. The second component of the landing fee is the operation charge

for peak and off-peak hours (ρl). Note that SFO does not currently charge any operation

fee (ρl = 0 for l ∈ {L,H}). Thus, current landing fees bear no relationship to congestion.

The objective of this paper is to simulate the effects of applying an operation charge in peak

hours (ρH > ρL = 0).

The term weightlrc is related to the type of airplane that carriers use on the spoke-

route r in congestion period l. We assume that all aircraft used by a carrier on a spoke and

period have the same characteristics. Moreover, we also assume that airlines decide the type

of plane according to the total daily demand for the segment and period (TDDlrc), daily

frequency (flrc), spoke distance (distr), airline identity (carrlrc), and finally a dummy for

peak hours (Ipeakl ). Therefore,

weightlrc = τ0 + τ1TDDlrc + τ2flrc + τ3distr + τ4carrc + τ5I
peak
l + εwlrc(10)
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where εwlrc is the disturbance term. Total demand (TDDlrc) and frequency (flrc) are expected

to be correlated with the error term. Consequently, the use of appropriate instruments is

necessary to avoid inconsistent estimates.

Total daily demand (TDDlrc) does not necessarily equal the sum of the demand for

products considered in our model. The reason is that we might find other travelers that use

the same flight but do not belong to any of the products considered in our model specification.

Good examples are one-way or travelers connecting at SFO. Hence,

TDDlrc =
∑
t∈T

∑
{kt|rkt=r,lkt=l,

,k∈Jct}

skt ∗Mt

92
+ResTDDlrc(11)

where the first term on the right hand side (RHS) captures the demand for products con-

sidered in our specification that use the spoke-route r, period l, and carrier c. rkt denotes

the last spoke used by product kt to reach SFO, and lkt denotes the period when product

kt is scheduled to arrive. As we previously noted, TDDlrc is the daily demand for spoke r,

period l, and carrier c. On the other hand, skt ∗Mt is the demand for the whole quarter. If

we assume that the demand is the same for any day of the quarter, we have to divide this

term by the number of days of the quarter, set at 92. ResTDDlrc corresponds to travelers

that do not use any of the products of the model but still use the same airline, spoke r, and

arrive during period l. This term is assumed to be independent of the demand for products

considered in our model.

The terms mjt × sjt × Mjt, “Total Operating Flight Cost”, and the rental charge of

terminals (RCc) in (8) are considered as variable costs. Hence, their derivative with respect

to the demand for a particular product will give us its marginal cost (mcjt). Letting qjt =

sjt ×Mt and using (8),

mcjt=mjt+
∑
r∈Ωc

∑
l∈{L,H}

f̃lrc

(
∂fees

∂qjt
×weightlrc+fees×

∂weightlrc
∂qjt

)
+
∂RCc
∂qjt

(12)

We note that the marginal cost (mcjt) does not depend on the undelayed flight cost

(FCostlrc) or the congestion operation charge (ρl).

We assume that both the product marginal cost (mcjt) and the undelayed flight cost

(FCostlrc) linearly depend on a vector of exogenous costs shifters (wmjt , w
f
lrc) via the respective

13



parameters (γm, γf ), and a random term that captures unobserved product characteristics

(ωmjt , ω
f
lrc):

12

mcjt = wmjtγm + ωmjt(13)

FCostlrc = wflrcγf + ωflrc(14)

The parameters wmjt will be estimated by equating (13) to (12), with the value of (12)

generated as explained below.

2.2.1. Rental Building Rates and Landing Fees: The way landing fees and rental rates are

determined is airport specific and follows the guidelines proposed by the DoT. The design

of these charges is important because it affects the decisions of carriers regarding fares and

frequency of their flights. SFO uses a hybrid approach to determine charges.13 Under such

a methodology, operating costs and revenues during the fiscal year are allocated to different

cost centers. Three of those cost centers are used to compute landing fees and rental rates:

the Terminal Cost Center, the Airfield Cost Center, and the Groundside Cost Center. The

Terminal Cost Center includes all costs and revenues generated in the terminal buildings.

For instance, maintenance and payments to the police in the terminals would be allocated

to this cost center. Similarly, revenues generated from concessions (mainly food, beverage,

and car rentals) are attributable to this cost center. The Airfield Cost Center includes, for

instance, the maintenance of the ramp and cost recovery of investments in capital.14 Finally,

the Groundside Cost Center is mainly related to costs and revenues from vehicle parking

and ground transportation vehicle access (e.g. taxi cabs, charter buses, or limousines).

12We could have considered the more standard log linear form for the product marginal cost. However, in

our application we found that 0.8% of the estimated mcjt are negative. This result prevents us from using

the log form.
13Previous literature distinguishes three broad class of contracts: residual, compensatory, and hybrid.

Under the residual contract, airlines pay the net cost of running the airport after taking into account

aeronautical and non-aeronautical revenues. As a result, airlines are charged so that the airport breaks

even (revenues=costs). By contrast, with the compensatory approach, airlines pay agreed charges based

on recovery of costs allocated to the facilities and services they use. Finally, the hybrid method combines

elements of the previous two types of contracts. Under such an approach, revenues and costs are assigned

to different cost centers, and some of those centers are defined as residuals (break even) and others as

compensatory (cost recovery) (Daniel (2001)).
14For example, a percentage of the costs of constructing a new taxiway or ramp are yearly allocated to

the airfield cost center until the total cost is recovered.
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Following the 2006 Annual Operating Budget document for the San Francisco Inter-

national Airport, the total landing fee revenues equal the amount needed to cover the net

operating costs of the Airfield Cost Center (ARCost), plus 50% of the operating deficit (or

surplus) in the Terminal (TCost) and Groundside (GCost) Cost Centers. The ratio between

the total landing fee revenues and the total annual scheduled landing weight of aircraft

(TWeight) is the weight-based fee (fees) that airlines pay per 1000 pounds of the maximum

gross landing weight (MGLW) of aircraft. That is,

fees =
ARCost+ 1

2
[TCost+GCost]

TWeight
(15)

Several remarks may be made with respect to the aforementioned charges: first, in 2006

this ratio was equal to $3.213 per 1000 pounds of aircraft MGLW. Second, the Groundside

Cost Center (GCost) tends to be profitable since it includes the lucrative car parking activity.

Because of that, having this term in the charge rule generally reduces the amount that airlines

must pay. Third, the above landing fee applies to airlines that sign the Airport-Airline Use

and Lease Agreement (signatory airlines). Carriers operating in SFO without such a contract

agreement (non signatory airlines) are usually charged more (the signatory landing fees plus

a fixed amount). In our application, all airlines are assumed to pay landing fees according

to the above methodology. Finally, as we already noted, the weight-based fee scheme does

not take into account the level of congestion at the airport.

Now we turn to the analysis of each component appearing on the RHS of (15). The net

operating costs of the Airfield Cost Center (ARCost) is assumed to be exogenous. On the

other hand, the net operating costs of the Terminal Cost Center in SFO (TCost) are equal

to the difference between operating expenditures (OE) and the operating revenues (OR):

TCost = OE −OR(16)

While operating expenditures (OE) are assumed to be exogenous, operating revenues (OR)

depend on the number of travelers using the airport (TTravelers). If we assume a linear

relationship between both variables, then

OR = ψterminal × TTravelers(17)

where ψterminal is the average operating revenue per traveler.
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Similarly, we define the net costs of the Groundside Cost Center (GCost) as the differ-

ence between costs (GC) and revenues (GRev) coming from groundside operations:

GCost = GC −GRev(18)

Groundside costs (GC) are assumed to be exogenous. However, groundside revenues (GRev)

depend on the total number of enplaned travelers (TTravelers). If we assume a linear

relationship between both variables, then

GRev = ψground × TTravelers(19)

where ψground may be interpreted as the average revenue per enplaned passenger from ground-

side operations (for instance, revenues from parking the car at the airport).

Note that the total number of enplaned travelers using SFO is not necessarily equal to

the total demand for products considered in our application. Total demand can be decom-

posed as follows,

TTravelers =
∑
kt

skt ×Mt +ResTT(20)

while the first term on the RHS accounts for demand considered in our model (domestic

round trips with SFO as an origin or final destination), ResTT captures the demand that is

not included in the products of our model (connecting and international flights, as well as

domestic flights from quarters of 2006 other than the 3rd). For simplicity, ResTT is assumed

to be independent of the demand for products considered in our model.

Finally, the denominator in (15) corresponds to the total scheduled landing weight of

aircraft at SFO (TWeight) for the fiscal year, and it is equal to

TWeight =
∑
l,r,c

weightlrc × f̃lrc +ResTW(21)

While the first term on the RHS accounts for the weight of aircraft used by products consid-

ered in our application, ResTW captures the total weight of flight operations that does not

belong to products of our model (mainly international and cargo flights, as well as domestic

flights from quarters of 2006 other than the 3rd). ResTW is assumed to be independent of

aircraft used by products considered in our application.
16



Apart from the landing fee, SFO is also compensated by carriers for the use of its

terminals. Following again the 2006 Annual Operating Budget document for SFO, the

total terminal rental charge paid by airlines equals the amount needed to cover 3/2 of the

net operating costs of the Terminal Cost Center (TCost), plus 50% of the calculated net

operating deficit (or surplus) of the Groundside Cost Center (GCost). Then the total rental

charge that airline c must pay to SFO for using its terminals is equal to

RCc =

(
3

2
TCost+

1

2
GCost

)
× Usagec(22)

where Usagec is the percentage of the total terminal surface leased by the airline c.

3. Solving the carriers’ decision problem

In this section we describe the optimality conditions for airlines. As we previously

noted, our model is a two stage game where carriers first decide on flight frequencies for

peak and off-peak hours and afterwards decide on the price of tickets. As usual, this game

is solved backwards: first, we derive the optimality conditions for fares taking frequencies as

given, and then we derive the first order conditions for frequencies taking into account the

response of fares.

3.1. Second Stage: Fares. Solving the second stage, the first order condition for maxi-

mizing the profit function of airline c with respect to the fare pj′t′ is given by

∂Πc

∂pj′t′
=
∑
t∈T

∑
j∈Jct

(pjt −mjt)
∂sjt
∂pj′t′

Mt + sj′t′Mt′ −(23)

−
∑
r∈Ωc

∑
l∈{L,H}

f̃lrc

[
∂fees

∂pj′t′
weightlrc + fees

∂weightlrc
∂pj′t′

]
− ∂RCc
∂pj′t′

= 0

where t′ ∈ T and j′ ∈ Jct′ . Several remarks are in order: first, optimal fares follow from

isolating the variable ticket price in (23). Second, the derivative of the profit function with

respect to fares does not depend on the congestion charge (ρl) or the undelayed flight cost

(FCostlrc). That means that optimal fares are not directly affected by ρl, but indirectly

through changes in frequencies. Finally, in our application, the product-specific cost (mjt)

is not observed, and we will use (23) to recover it. Then, we can compute the marginal costs

(mcjt) using (12) and estimate the parameters appearing in the marginal cost equation (13).

Now we turn to the computation of the derivatives appearing on the RHS of (23). As

we will see, these derivatives end up being functions of the derivatives of the market shares

with respect to fares. Hence, those derivatives are easily computed once the demand (1) and
17



the aircraft weight relationship in (10) are estimated. Following Nevo (2000), the derivative

of the market share of product j in market t with respect to the price of product j′ in market

t′ is

∂sjt
∂pj′t′

=



∫
αipsijt(1− sijt)dPν(νi)dPL(Li)dPY (yi) if j = j′ & t = t′

−
∫
αipsijtsij′t′dPν(νi)dPL(Li)dPY (yi) if j 6= j′ & t = t′

0 if t 6= t′

(24)

where sijt = exp(δjt + µijt)/
[
1 +

∑
m∈Jt exp(δmt + µimt)

]
is the probability of individual i

purchasing product j in market t (similar interpretation for sij′t′). αip is the previously

defined individual-specific coefficient associated with the ticket price.

We saw that the weight-based fee is a function of the revenues and costs assigned to

different cost centers (equation 15). At the same time, these revenues depend on travel

demand, flight frequency, and ticket prices. The gradient of the weight-based landing fee

(fees) with respect to changes in fares, assuming that the net operating costs of the Airfield

Cost Center (ARCostC) are exogenous,15 is equal to

∂fees

∂pj′t′
=

1

TWeight

[
1

2

∂(TCost+GCost)

∂pj′t′
− ∂TWeight

∂pj′t′
fees

]
(25)

We remark that the expression is the same for products operating during peak or off-peak

periods. We use (16) to compute the derivative of the net operating costs of the Terminal

Cost Center (TCost). Similarly, using (18) we obtain the derivative of the net costs of the

Groundside Cost Center (GCost). Finally, we use (21) to compute the derivative of the total

scheduled landing weight (TWeight) with respect to fares.

If we look again at the RHS of (23), we use (10) to compute the derivative of the weight

of aircraft (weightlrc) with respect to ticket prices. The gradient of the terminal rental cost

(RCc) follows from computing the derivative of (22).

As we previously noted, the previous derivatives are computed using estimates from the

demand (1) and aircraft weight equations (10). Then we plug their values in the fare F.O.C.

(23) and solve for the product-specific cost (mjt). This result lets us obtain the marginal

15We may argue that ARCostC depends on the number of landings at the airport. That is, the higher

the number of operations, the higher are the costs of maintenance of the ramp. For simplicity, we do not

consider this effect.
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costs (mcjt) and estimate the rest of parameters appearing in the first stage of the game,

where frequencies are chosen.

3.2. First Stage: Frequencies. Once we derive the optimality conditions for fares, we

solve the first stage of the game. The first order condition of the profit function of carrier

c with respect to the daily frequency of its flights operating on the spoke r′ and congestion

period l′ is given by

∂Πc

∂fl′r′c
=

∑
t∈T

∑
j∈Jct

[
(pjt −mjt)

∂sjt
∂fl′r′c

Mt +
∂p∗jt
∂fl′r′c

sjtMt

]
−(26)

− 92
[
fees× weightl′r′c + βdDl′ + FCostl′r′c + ρl′

]
−

−
∑
r∈Ωc

∑
l∈{L,H}

f̃lrc

[
∂fees

∂fl′r′c
weightlrc + fees

∂weightlrc
∂fl′r′c

+ βd
∂Dl

∂fl′r′c

]
− ∂RCc
∂fl′r′c

= 0

where r′ ∈ Ωc and l′ ∈ {L,H}. ∂p∗jt
∂fl′r′c

denotes the derivative of the optimal fare with respect

to frequency. In our application, we will use (26) to estimate the monetary value of one

minute of delay (βd) and the undelayed flight cost component (FCostlrc). Moreover, we also

use this expression to analyze the impact of imposing a congestion charge in the landing fee

rule.

The difficulty in (26) lies in computing the gradient of the optimal fare (
∂p∗jt
∂fl′r′c

) and

the derivative of market shares with respect to frequencies (
∂sjt
∂fl′r′c

). Let us start with
∂p∗jt
∂fl′r′c

.

We assume that the equilibrium pricing function is smooth with respect to flight frequency

and take an approach similar to Villas-Boas (2007) and Fan (2012). We compute the total

derivative of the price optimality condition (23) with respect to fares (dpk, k = {1, · · · , J})
and daily flight frequency (fb, b = {1, · · · , |Ω × {L,H}|}), where J is the total number of

products (J =
∑
t∈T

Jt), and |Ω × {L,H}| is the total number of spokes operated by airlines

at SFO in each period. Let Ψp
c denote the J × J ownership matrix with the general element

Ψp
c(j
′t′, k) equal to one when both products j′t′ and k are offered by carrier c, and zero

otherwise. Similarly, let Ψf
c denote the J × |Ω× {L,H}| ownership matrix with the general

element Ψf
c (j
′t′, b) equal to one if the product j′t′ and the spoke-period pair b are operated

by the same carrier c. Then, the total derivative of the fare F.O.C. (23) with respect to fares

and frequencies for product j′t′ and carrier c can be written as
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∑
k

Ψp
c(j
′t′, k)

∂2Πc

∂pj′t′∂pk︸ ︷︷ ︸
Gp

c (j′t′,k)

dpk +
∑
b

Ψf
c (j
′t′, b)

∂2Πc

∂pj′t′∂fb︸ ︷︷ ︸
Hp

c (j′t′,b)

dfb = 0(27)

We can express (27) in a matrix form. Let Gp
c be a J × J dimensional matrix with

component Gp
c(j
′t′, k). Similarly, let Hf

c be a J × |Ω × {L,H}| dimensional matrix with

component Hf
c (j′t′, b). Then, condition (27) for the entire collection of products j′t′ can be

written as

Gp
cdp+Hf

c df = 0(28)

where dp and df are column-vectors of dpk for k = {1, · · · , J} and dfb for b = {1, · · · , |Ω ×
{L,H}|} respectively. Note that the components of the matrices Gp

c and Hf
c are different

from zero only if the pairs (pj′t′ , pk) and (pj′t′ , fb) belong to carrier c.

We can express the previous equality in a more general form where all carriers are

included. Let Gp =
∑
c

Gp
c and Hf =

∑
c

Hf
c , then the following equality also holds

Gpdp+Hfdf = 0(29)

If Gp is a full rank matrix, the derivative of optimal fares with respect to flight frequen-

cies is given by

dp∗

df
= −G−1

p Hf(30)

Once we derive dp∗

df
, we can compute the derivative of the market share with respect

to flight frequency (
∂sjt
∂fl′r′c

). Remember that travelers using different products may share

the same aircraft. Moreover, the frequency of flights operating in one spoke during peak or

off-peak hours affects the average delay of other flights operating during the same period.

These two features are captured by the derivative of the market share, which is given by

∂sjt
∂fl′r′c

=

∫
sijt

(
κl
′r′c
ijt −

Jt∑
n=1

κl
′r′c
int sint

)
dPν(νi)dPL(Li)dPY (yi)(31)

Expression (31) follows from computing the derivative of the market share equation (7) with

respect to the frequency of flights, where κl
′r′c
iΘt , with Θ ∈ {j, n} in (31), is given by
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κl
′r′c
iΘt = αip

∂p∗Θt
∂fl′r′c

+
1

eΘt

(
αif1I{rΘt = r′ ∩ Θ ∈ Jct ∩ lΘt = l′}+ αid

∂Dl

∂fl′r′c

)
(32)

Θ denotes a product of market t (Θ ∈ {j, n} in (31)), and
∂p∗Θt

∂fl′r′c
is equal to the corresponding

matrix element of the derivative of optimal fares with respect to flight frequencies (30). 1I{·}
is an indicator function equal to one if the condition inside brackets holds, and zero otherwise.

As we previously noted, travelers care about the flight frequency and average delay at each

of the connecting and destination airports used by products. That is why we introduce e�t

as the number of connections of the product.16 Also remember that we already defined αip,

αif , and αid as individual-specific parameters associated with fares, frequencies, and delays

respectively. The last term on the RHS of (32) corresponds to the derivative of the previously

defined average airport delay in period l (equation 9), and it is given by

∂Dl

∂fl′r′c
=


exp(ωdl f̄l)ω

d
l if l = l′

0 if l 6= l′
(33)

The derivative of the market share of product jt in (31) not only depends on its own

characteristics but also on characteristics of other products. This effect is captured by the

summation in the expression. κl
′r′c
ijt depends on the relationship between the product jt, the

operating carrier c, the spoke r′, and the period l′. Looking at (32), if jt uses r′ (rjt = r′),

during period l′ (ljt = l′), and carrier c, then κl
′r′c
ijt not only depends on the derivative of

the optimal fare with respect to frequency (
∂p∗jt
∂fl′r′c′

), but also on the parameters linked to

the demand for flight frequency (αif ) and also delay (αid
∂Drjt

∂fl′r′c
). On the other hand, if the

product jt does not use r′ or carrier c but still is offered in the same period l′, then κl
′r′c
ijt is

no longer affected by αif but still depends on the derivative of the airport delay in period l′

and the derivative of the optimal fare with respect to frequency. Finally, if product jt is not

scheduled to land in l′, then κl
′r′c
ijt only depends on the derivative of the optimal fare with

respect to frequency. Similar reasoning holds for κl
′r′c
int .

Once
∂p∗jt
∂fl′r′c

and
∂sjt
∂fl′r′c

are computed, the rest of derivatives appearing in the frequency

F.O.C. (26) are straightforward. In particular, the derivative of the weight-based landing fee

with respect to frequency is equal to

16More details are provided in the data section.
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∂fees

∂fl′r′c
=

1

TWeight

[
1

2

∂ (TCost+GCost)

∂fl′r′c
− ∂TWeight

∂fl′r′c
fees

]
(34)

where the derivative of the net operating costs of the Terminal Cost Center (TCost) follows

from computing the derivative of (16). Similarly, we use (18) for the derivative of the net

costs of the Groundside Cost Center (GCost). In addition, we use (21) to compute the

derivative of the total scheduled landing weight (TWeight).

If we look again at the RHS of (26), we use (10) to compute the derivative of the weight

of the aircraft (weightlrc), and equation (9) for the derivative of the average airport delay

in each period (Dl). Finally, the derivative of the terminal rental charge of carrier c (RCc)

follows from computing the derivative of (22).

4. Data and Statistics

4.1. Data Description: We perform the estimation of the model for the third quarter of

2006. Note that the new policy was issued in 2008, when the economic downturn reduced

air-travel demand. We use pre-crisis data (2006) to better capture the effects of the new

guidelines. In order to conduct the analysis, several data sources are used. First, we use the

Airline Origin and Destination Survey (DB1B), the T-100, the Airline On-Time Performance,

and the Schedule B-43 Aircraft Inventory data-sets from the U.S. Bureau of Transportation

Statistics. These sources, jointly with the aircraft manufacturers’ websites, are used to

obtain information about the product choices of travelers and their characteristics. Second,

the Federal Aviation Administration website and the Annual Operating Budget for SFO

give detailed financial information about the airport and the methodology used to determine

the weight-based landing fee and rental charges. Finally, we use demographic data from the

American Community Survey (ACS) and the 2006 MTC Airline Passenger Survey.

The Appendix contains further details about the data sources.

4.2. Construction of the data-set: We restrict our attention to data from the third

quarter of 2006. Following Urdanoz and Sampaio (2011) and using the DB1B data-set, we

only consider products with the following characteristics: (1) round trip itineraries starting

and ending at the same airport, thus excluding one-way trips and open jaws; (2) products

with up to three coupons per direction; (3) with at most one ticketing company; (4) with at

most two operating carriers; (5) that are not operated by a foreign carrier; (6) that do not

involve a coupon operated by an unknown carrier; (7) that do not involve a ground segment;

(8) that do not have an airport coded as NYC, since we cannot identify which of the 4
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airports in the New York Metropolitan area was used; and finally, (9) with fares between

$50 and $3000.

A product is considered to be offered in peak hours if it is scheduled to arrive at

SFO when the airport congestion is high (from 9:00AM to 12:30PM, and from 6:30PM to

10:30PM), and off-peak otherwise. We use the Airline On-time Performance and DB1B data-

sets to define the characteristics of products in each period: market shares, daily frequency

of flights, and delays for peak and off-peak hours.

It is important to note that the DB1B only reports quarterly data about product char-

acteristics and number of passengers. Therefore, it does not specify if passengers arrived at

SFO during peak or off-peak hours. The way we distribute travelers between the two peri-

ods is as follows: first, we use the Airline On-time Performance and Schedule B-43 Aircraft

Inventory data-sets to compute the daily capacity of carriers offering flights at SFO by spoke

and period. As we will see in detail later, daily capacity is equal to the maximum gross

landing weight of aircraft times the number of daily operations for the spoke-route, period

and carrier. As a result, for each spoke-route and carrier we know the percentage of daily

capacity assigned to each period. We use those percentages to determine which passengers

(from the DB1B) arrive at SFO during peak and which ones during off-peak hours. This

assumption seems reasonable since the total daily capacity at each period is highly correlated

with the number of passengers.

A similar problem arises with fares. We use the average fare paid by travelers for the

same product independently if they decide to flight during peak or off-peak hours. We did

not apply any discount in off-peak hours because we are not aware of any empirical work

analyzing differences in fares between periods. In any case, we repeated the exercise with a

discount of 15% and found minor changes in the main results of the paper.

We also use the Airline On-time Performance data-set to construct the frequency vari-

able for products. We know the number and the arrival time of flights operated by the

main U.S. carriers. Hence, we know which flights land during peak and which ones dur-

ing off-peak hours. Since products are round trip and may have several connecting flights,

some other assumptions are needed. If travelers land at SFO during peak hours, we assume

that they also leave SFO during congested periods, and off-peak otherwise. For connecting

flights, we alternate peak and off-peak depending on the arrival time. For example, imagine

that a traveler arrived at SFO during peak hours from John F. Kennedy International via

Chicago O’Hare Airport. According to our assumption, the traveler landed at Chicago in

off-peak and departed from John F. Kennedy International in peak hours. For simplicity,

we assume that each U.S. airport has similar congested periods. That is, flights arriving
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between 9:00AM and 12:30PM and between 6:30PM and 10:30PM are considered operating

in peak hours, and off-peak otherwise. Given those assumptions, the flight frequency of a

product is constructed as the mean of the frequency for each trip segment of the product

and corresponding period.

We follow the approach proposed by Mayer and Sinai (2003) to construct the delay

variable. Rather than defining flight delay as the percentage of flights arriving more than 15

minutes after the scheduled arrival time, we use the difference between actual and minimum

feasible flight durations. Such an approach avoids the use of scheduled arrival times that may

be subject to airline manipulation (padding) to increase on-time performance. We construct

the flight duration of a trip segment as the difference between the actual arrival time and

the wheels off time at the airport of departure. We do not take into account the aircraft taxi

time at the airport of origin, since differences in this variable may be explained by reasons

other than congestion at the destination airport. Following the same approach as for flight

frequency, we first compute the average delay at connecting and final airports in each period,

and then we derive the mean average delay of airports and periods used by the product.

As we previously noted, landing fees depend on the maximum gross landing weight

(MGLW) of aircraft (variable weightlrc in our model). We use the Airline On-Time Perfor-

mance and the Schedule B-43 Aircraft Inventory data-sets to construct this variable. The

Airline On-time Performance does not show the model of aircraft used by carriers, but it

reports the aircraft tail number (civil registration serial number). We match this number

with the one appearing in the Schedule B-43 Aircraft Inventory to obtain the model of air-

craft. Given the type of airplane, we check its technical specifications in the manufacturer’s

website to obtain its MGLW. Carriers may use several types of aircraft for the same spoke-

route and period. We compute the average MGLW of the different aircraft operating in the

same spoke-route and period weighted by their number of operations during 2006. The daily

capacity of carriers at each spoke-period pair is derived as the average MGLW of aircraft

times the corresponding number of operations.

We use the American Community Survey (ACS) and the 2006 MTC Airline Passenger

Survey to obtain demographic information about income and travelers’ locations. Using

the 2006 MTC data-set, we construct the empirical distributions of household income and

distance conditional on the departure period (see extra moments conditions (40) and (41)).

On the other hand, we create the variable “traveler distance” (d(Li)) by taking random

draws from the Bay Area population distribution provided by the ACS. We also use the

ACS to create the variable “household income” for individual i (yi). We take random draws

of the income distribution for each of the metropolitan statistical areas where the airports of
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origin are located (see utility function (1)). We do not have the exact address of respondents

in the ACS or 2006 MTC surveys, but only the area where they come from. Two different

location measures are used: the 2006 MTC survey classifies the place of origin according to

Regional Travel Analysis Zones (TAZ), dividing the San Francisco Bay area into 1454 zones.

Instead, the ACS partitions the Bay Area using census tracts (1099 zones). Fortunately there

exists an equivalence between the two measures. Once the measures are homogenized, we

compute the distance from the traveler’s location to SFO as the Euclidean distance between

the airport and the centroid of the census tract where the traveler is located.17 Our model

uses county fixed effects, so we group the census tracts according to their respective county.

Similarly, we need to transform the household income information in order to compare both

surveys.

As noted above, we use products from the 3rd quarter of 2006 to estimate the model.

However, the weight-based landing fee and rental charge are computed using data from the

fiscal year.18 For that reason, to construct some variables we use yearly data rather than

just one quarter. The variable TWeight, used as denominator in the weight-based landing

fee expression (15), will be the sum of the MGLW of each aircraft times the number of

operations for the year 2006. This variable is constructed using the T-100 data-set. We use

the total number of enplaned passengers (using also the T-100), the Groundside Cost Center

revenues (GRev), and the Terminal Cost Center revenues (OR) for all quarters of 2006

to determine the average revenue per passenger from terminals (ψterminal) and groundside

operations (ψground).

We do not have information about the terminal areas leased by airlines. Instead, we

use the number of operations performed by each airline at SFO as a proxy for the usage of

terminals (Usagec).

4.3. Summary Statistics:

4.3.1. Choice and Flight Characteristics Statistics: Table 1 reports statistics for product

characteristics. We differentiate products offered during peak hours (columns 4 and 5) from

off-peak products (columns 2 and 3). Columns 6 and 7 report the mean and the standard

deviation for all products. As explained in the data section, we did not assume any fare

17Alternative measures can be used. For instance, rather than using the Euclidean distance we can

compute the topographic distance taking into account roads and access to SFO. Another option would be

to compute the time needed to reach the airport.
18The fiscal year for SFO starts in July 1 and finishes June 30. For simplicity we assume that the fiscal

year and the natural year are the same.
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discount in off-peak products, which explains why the mean fare in both periods are similar.

On the other hand, we do observe differences in the number of purchased tickets. Travelers

purchased, on average, 149.24 tickets of each product offered during peak and only 95.97

during off-peak hours. The percentage of direct flights, frequency, and delays are also higher

in peak hours. There are not significant differences in the distribution of tickets by carrier

between periods. In both periods, United Airlines (UA) is the carrier with the highest

presence, followed by American Airlines (AA) and Delta Airlines (DL). Finally, 30% of

products use one of the airports with slot constraints.19

Table 2 reports the number of products and the number of operating carriers within

markets. On average, there are more products and operating carriers in peak hours. On top

of that, in almost all markets there are products from both periods. That is, in 435 out of

437 markets, there exist products with scheduled flights landing during peak and off-peak

hours.

Table 3 summarizes the characteristics of spokes reaching SFO by carrier and period. It

provides information about the daily frequency of flights, the weight of aircraft (MGLW), and

the total daily capacity of the spoke-carrier pairs for peak and off-peak hours (measured as

the product of MGLW times the daily frequency of flights by carrier and period). Although

the average frequency of flights is higher in off-peak hours, the total offered capacity is lower.

This is explained by the use of bigger planes during congested hours. Note also that the

number of spokes served in peak hours is higher (56 spokes in peak vs 49 in off-peak).

Tables 4 and 5 show statistics for spoke-route traffic during peak and off-peak hours

respectively and broken down by carrier. They report the mean and standard deviation of

the number of daily flight arrivals, the average weight of aircraft (MGLW), daily capacity of

the spoke-carrier pairs, and the number of spokes operated by carriers in each period. SFO

is one of the hubs for United Airlines (UA), which explains why UA operates a high number

of spokes. Moreover, in both periods DL operates the biggest planes and US the smallest

ones.

Table 6 reports financial details of SFO for the year 2006. This information is incorpo-

rated in the estimation of the supply side of the model. It includes the landing fee per 1,000

pounds of MGLW, the total number of enplaned passengers, the operating revenues of the

Terminal Cost Center (OR), and the revenues of the Groundside Cost Center (GRev). The

average operating revenue per traveler in the terminals (ψterminal) is computed as the ratio

between the operating revenues (OR) and total enplaned passengers. The average revenue

19Slot constrained markets are the ones with one of the following airports: JFK, LGA, DCA, or ORD.
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per enplaned passenger from groundside operations (ψground) is equal to the ratio between

the groundside revenues (GRev) and the total enplaned passengers. Table 6 also reports the

total weight of landed aircraft in 2006 (TWeight).

4.3.2. 2006 Airline Passenger Survey Statistics (2006 MTC):. This survey helps us to iden-

tify the parameters of the demand equation (1). Table 7 and Table 8 summarize the distri-

bution of household income and location in the Bay Area of the survey respondents. Table 7

shows the joint distribution of respondents departing during peak hours. Similarly, Table 8

analyzes the distribution in off-peak hours. We group counties according to their geograph-

ical location and similarities in income distributions. This decision has been made because

of the low number of observations in some cases (second column of both tables). Most of

respondents come from the county in which the airport is located (San Mateo County) or the

county next to it (San Francisco County). If we look at household incomes, the distributions

are skewed to household groups with higher income, with most of respondents belonging

to the $100,000 and $150,000 group. In both cases, the distributions for peak and off-peak

hours are very similar.

5. Estimation

The model is estimated as follows: first, we estimate the parameters of the weight

equation (10) by two-stage least squares (TSLS); second, we estimate the demand (1) and

marginal cost equations (13) by the general method of moments (GMM); finally, we use

the first order conditions with respect to frequencies (26) to estimate the valuation of one

minute of delay (βd) and the parameters of the undelayed cost equation (14). While the

estimation of (10) is straightforward, some remarks are necessary for the GMM procedure,

and the estimation of βd and γf .

5.1. GMM discussion: The GMM estimation procedure follows the nested fixed point ap-

proach suggested by Petrin (2002). He extended the algorithm proposed by Berry, Levinsohn

and Pakes (1995) (BLP) by combining data from different sources.

The model is estimated using a non-linear GMM method. Three sets of moment con-

ditions are used: one derived from the difference between the observed market shares and

predicted market shares (BLP moments), other moment conditions that add extra demand

information using the 2006 MTC Survey, and the marginal cost moments.

5.1.1. BLP Set of Moments: First, as in BLP we want to match the predicted market shares

sjt(δ(θ), ·; θ) with those observed in the data sjt:
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sjt(δ(θ), ·; θ) = sjt for j = {0, · · · , Jt} and t = {1, · · · , T}(35)

Berry (1994) shows that under certain conditions, the previous equality holds for a

unique value of the mean utility level (δjt). This property is useful because it will allow us

to solve numerically for δjt by using a contraction mapping procedure. This is equivalent to

computing the series

δh+1
jt = δhjt + ln(sjt)− ln(sjt(δ(θ), ·; θ))(36)

for j = {1, · · · , Jt}, t = {1, · · · , T}, and h = {0, · · · , H}. Our approximation for δjt will be

δHjt such that ||δHjt − δH−1
jt || is smaller than some tolerance (in our application 10−14).

As usual in this type of model, we are not able to calculate analytically the integral

associated with the market shares sjt(δ(θ), ·; θ). So we simulate the market shares by taking g

draws from the approximated distributions of distance to the airport (PL), household income

(PY ), and the distribution of unobservables (Pν). Hence, the simulated market shares are

given by

sjt(δ(θ), ·; θ) =
1

g

g∑
i=1

exp [δjt + µijt]

1 +
∑
m∈Jt

exp [δmt + µimt]
(37)

For the observable individual characteristics (distance and income) we use g random

draws from the empirical distribution.20 For the unobserved taste of travelers (ν’s) we use

Halton sequences rather than Monte Carlo simulations. This approach allows us to obtain

a better approximation to the normal and lognormal distributions (Train (2009)).

From the mean utility equation (2) and given δjt, θ and product characteristics, we

can derive the moment condition related to the unobserved-to-researcher characteristics of

products j in market t (ξjt). That is,

ξjt = δjt − αpeakÎpeakjt − αppjt − αf f̂jt − αdD̂jt − xjtβ(38)

Using appropriate instruments (zd) to control for price and frequency endogeneity, our

moment condition can be written as

E[zdjtξjt] = 0(39)

20In our application g=1200.
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5.1.2. Additional Demand Information Moments: Following Petrin (2002), we extend the

BLP model by adding moment conditions constructed using the 2006 MTC Airline Survey

Data. Such survey data give us interesting demographic information about travelers condi-

tional on departing during peak or off-peak hours. In particular, we use information about

their distance to the airport and their household income.

Basically we will try to construct moments that match the predicted average consumer

demographics obtained from the BLP moments with the average consumer demographic

characteristics from the MTC survey. The extra moment conditions will match the proba-

bility that a traveler i departing from SFO in period l (where l ∈ {L,H}), comes from/goes

to a specific county (C) and belongs to a income group (Y). That is,

ηc(C, l) = E [Li ∈ C|{i departs in l}](40)

ηy(Y , l) = E [yi ∈ Y|{i departs in l}](41)

where

C ∈ {S.Francisco-S.Mateo, Sta Clara, Alameda-C.Costa, Solano-Napa, Sonoma-Marin}

Y ∈ {<$25k, $25k-50k, $50k-75k, $75k-100k, $100k-150k, $150k-200k,>$200k}

l ∈ {L,H}

where Li and yi are the location and household income group of individual i. ηc(C, l) and

ηy(Y , l) are the probabilities from the 2006 MTC survey (Tables (7) and (8)). The RHS

expressions in (40) and (41) are the expected values predicted by our model and computed

using the simulated market shares (37). These extra conditions apply for all income groups,

counties and levels of congestion.

Since the probabilities ηc(C, l) and ηy(Y , l) conditional on the level of congestion must

sum to one, we do not include one of the options in the moment conditions. In particular, we

do not include the county couple Solano-Napa nor household group with income less than

$25,000.

As we will see later, to minimize the GMM objective function, it is necessary to use

the sample analogs of the previous moments. Since the MTC survey gives information

conditional on departing during peak or off-peak hours, we need to apply the definition of

conditional probability to match the predicted probabilities with the MTC survey proba-

bilities. Thus, the sample analog of the additional information moments can be written

as
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ηc(C, l)−

g∑
i=1

∑
{jt|ljt=l}

sijt(δ(θ), ·; θ)Mt1I{Li ∈ C}

g∑
i=1

∑
{jt|ljt=l}

sijt(δ(θ), ·; θ)Mt

(42)

ηy(Y , l)−

g∑
i=1

∑
{jt|ljt=l}

sijt(δ(θ), ·; θ)Mt1I{yi ∈ Y}

g∑
i=1

∑
{jt|ljt=l}

sijt(δ(θ), ·; θ)Mt

(43)

where the second term of the expressions corresponds to the model predicted probabilities

that a traveler i coming from county C and belonging to the household income group Y
lands at SFO in period l. As we previously noted, ljt denotes the period when product jt is

scheduled to arrive. Finally, 1I{·} is an indicator function equal to one if the condition inside

brackets holds, and zero otherwise.

5.1.3. Marginal Cost Moment: In this case, the corresponding moment condition is

E[zmjtω
m
jt ] = 0(44)

where ωmjt is the residual of the marginal cost equation (13) and zmjt are cost instruments.

5.1.4. GMM Estimation: Let ϑ =

[
θ

γm

]
denote the set of parameters to be estimated using

GMM. Our optimal 2-step GMM estimators will be

ϑ̂ = argmin
ϑ
Ĝ(ϑ)′Φ−1Ĝ(ϑ)(45)

where Ĝ(ϑ) is the vector of sample analogs of the moment conditions noted above, and Φ is

a consistent estimate of the variance-covariance matrix of the moments using the parameter

estimates of the first step.

Detailed practical information about how to estimate this type of model can be found

in Nevo (2000b). The algorithm is an iterative procedure characterized by first solving the

contraction mapping (given initial values for θ̇ and γ̇m, solve for δ(θ̇)), afterwards the GMM
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optimization problem (given δ(θ̇), solve for θ̈ and γ̈m), and iterate again until convergence is

reached.21

As we previously pointed out, the product-specific cost (mjt) and marginal costs (mcjt)

are unobserved by the econometrician. The GMM procedure also gives us estimates for

both variables. They are part of the iteration process. Given an initial value for θ̇, we can

use the fare F.O.C. (23) and estimates from the weight equation (10) to obtain ṁjt. The

procedure is relatively simple, since once we use θ̇ and estimates for the parameters of the

weight equation, the only unknown in the optimality condition for fares is ṁjt. Knowing the

product-specific cost (ṁjt), marginal costs (ṁcjt) follow from computing the derivative of

the variable costs with respect to the demand for product jt (12). New values of estimates

for mjt and mcjt are obtained in each iteration until convergence is reached.

Finally, if we rely on the asymptotic properties of the estimates, then

J1/2(ϑ̂− ϑ0) ∼ N (0, (Γ′Φ−1Γ)−1)(46)

where Γ = E
[
∂Ĝ(ϑ0)
∂ϑ

]
. We report standard errors using consistent estimates of Γ and Φ.

5.2. Estimation of βd and the undelayed flight cost (FCostlrc): As in the case of

the product-specific cost (mjt), the undelayed flight cost (FCostlrc) is not observed by the

econometrician. Neither do we observe the monetary value of one minute of delay (βd).

Under the assumption that FCostlrc depends linearly on a vector of cost shifters (wflrc) and

a random term (ωflrc) (equation 14), we use the frequency F.O.C. (26) to identify βd and the

parameters linked to the undelayed flight cost component (γf ).

Combining equations (26) and (14), the expression we use for the estimation of βd and

wfrc is given by

1

92

∑
t∈T

∑
j∈Jct

[
(pjt −mjt)

∂sjt
∂fl′r′c

Mt +
∂p∗jt
∂fl′r′c

sjtMt

]
− fees× weightl′r′c − ρl′ −(47)

− 1

92

∑
r∈Ωc

∑
l∈{L,H}

f̃lrc

[
∂fees

∂fl′r′c
weightlrc + fees

∂weightlrc
∂fl′r′c

]
− ∂RCc
∂fl′r′c

 =

= wflrcγf + βd

Dl +
1

92

∑
r∈Ωc

∑
l∈{L,H}

f̃lrc
∂Dl

∂fl′r′c

+ ωflrc

21As suggested by Dube, Fox and Su (2012) we use tight tolerances: 1e−14 for the contraction and 1e−7

for the GMM function. We use the Knitro optimization package for Matlab and its interior/CG (barrier)

algorithm to solve the GMM minimization problem.

31



All elements on the LHS of (47) are known. Note also that in our application ρl′ = 0, since

SFO does not impose any operation charge except the weight-based landing fee (fees). Once

the value of the LHS expression is computed, the estimation of the parameters follows from

applying OLS.

Finally, the fitted value for FCostlrc equals the product of the estimates for γf times

the cost shifters (wflrc) (see (14)). Once all parameters of the model are estimated, we will

recompute the optimal response of carriers with respect to the frequency of their flights and

fares for different values of the congestion charge (ρl′).

5.3. Instruments and Identification: We allow for the possible endogeneity of fares and

frequencies with the unobserved-to-researcher variable ξit in the demand equation (see (1))

and the random term in the marginal cost equation (13). Similarly, total demand and

frequency are also likely correlated with the disturbance term in the weight equation (10).

We correct for endogeneity using similar instruments to those proposed by Berry and Jia

(2010) and Nevo (2001):

• Demand characteristics considered exogenous: distance, dummy for peak hours, oper-

ating carrier, dummy for direct flight, and a dummy for airports with slot constraints.

• Number of flight connections.

• Dummy indicating if the connecting/destination airport is a hub for the carrier op-

erating the flight.

• Dummy for trips longer than 1,500 miles.

• The mean of the distance of all products offered by competing carriers in the market.

• The mean of the distance of all products offered by the own carrier in the market.

To construct instruments for flight frequency, we first regress the number of departures

on distance, market size (measured by the geometric mean population of the origin and des-

tination metropolitan statistical areas), number of competitors, carrier dummies, dummies

for trips longer than 1,500 miles, a dummy indicating if the connecting/destination airport

is a hub for the carrier operating the flight, and a dummy for peak hours. Once we ob-

tain the estimates, we compute the residuals, actual minus fitted frequencies, and include

them as instruments. The rationale of this approach is as follows: we assume that what is

left after controlling for several factors (residuals) is correlated with the marginal cost but

uncorrelated with the demand unobservable (ξjt).

The approach used for the instruments in the weight equation (10) is similar. The only

difference is that we do not use connecting flights, and we also add potential demand as an
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instrument (geometric mean population of the origin and destination metropolitan statistical

areas).

The identification strategy is similar to the previous literature: 1) Reliance on substan-

tial variation of product and demographic characteristics across markets, 2) Use of micro

data (2006 MTC Survey), which lets us add extra moment conditions that match the predic-

tions of our model with the survey (equations (40) and (41)), 3) Imposing a Bertrand-Nash

equilibrium in prices, 4) Using the profit first order conditions with respect to flight fre-

quency to estimate the cost of operating a flight (FCostlrc) and the cost of one minute delay

(βd) (equation (47)). In order to identify these two unobservable variables, we assume that

FCostlrc linearly depends on some factors: distance, operating carrier, dummy for peak

hours, and a disturbance term (see (14)).

6. Estimation Results

6.1. Demand Parameters: Table 9 presents the demand estimates (1). The standard

errors are reported in parenthesis. The second column corresponds to a logit model without

instruments (OLS column). The third column reports estimates using instruments (IV

column). In these basic specifications we assume that demand depends on fares, distance,

flight frequency, a dummy for direct flights, a dummy for peak hours, carrier dummies, slot

constrained destinations, and delays. Most of the estimates have the expected sign. As

noted above, fares and flight frequencies are likely to be correlated with the unobserved-

to-researcher characteristic (ξ). ξ can be interpreted as a quality index and it is positively

correlated with fares and frequency of flights. That explains why the fare (αp) and frequency

(αf ) estimates in the OLS specification are biased upwards and downwards respectively.

These two models do not capture important aspects of travelers’ heterogeneity.

Column 4 reports estimates for the full model. The last ten variables control for the

heterogeneity of travelers: the absolute values of σ0, σf and σd are equal to the standard

deviation of normal distributions and they are linked to a constant, frequencies and delays

respectively. σp is the parameter associated with individual fare taste, λ is the airport-

distance sensitivity of travelers, and αy is the marginal utility of income. The last four

parameters correspond to county fixed effects. Remember that the price coefficient has three

components: the parameter common to all travelers (αp), the marginal utility of income

(αy) times the household income (yi), and the component that captures the heterogeneity

that is not related to income (σpνpi ). αp and αy have the expected sign. Having αy positive

is consistent with the idea that the higher the traveler’s income, the less is the sensitivity

to changes in fares. The estimates associated with flight distance are also in line with
33



the previous literature. As Berry and Jia (2010) point out, demand is increasing in flight

distance because travel alternatives (e.g. car, bus, or train) become less attractive, but at

the same time the trip is less and less pleasant. The estimate associated with distance from

travelers’ location to the airport (λ) is negative, indicating that the farther the airport from

the traveler’s final/origin location in the Bay Area, the higher is the disutility of flying from

SFO. Travelers prefer higher frequency because they would find it easier to choose a flight

that better matches their preferred departure time. As predicted, the direct flight coefficient

is also positive. The delay estimate (αd) also has the expected sign. Increasing delays reduce

the willingness to pay for a ticket. Lastly, travelers prefer to fly in the morning and late in

the afternoon, periods of time when the level of congestion at the airport is high.

Table 10 reports the mean and standard deviation of the product own-price elasticities.

Columns 2 and 3 display the elasticities by period and carrier. The last column analyzes

the case where we do not distinguish if the product is scheduled to arrive at SFO during

peak or off-peak hours. We do not observe large differences across airlines or periods. If we

compare them with the elasticities provided by Berry and Jia (2010), they are quite similar.

Although our estimates are somewhat lower, they are of the same order of magnitude. In

particular, our average price elasticity is equal to -3.44, higher (in absolute value) than the

-2.10 value that Berry and Jia (2010) report. These similarities in results are remarkable if

we take into account that Berry and Jia (2010) study the whole U.S. domestic market and

that their model differs from ours.

Table 11 displays the frequency semi-elasticities of demand. Increasing by one the

number of daily flights during peak and off-peak hours, the demand increases, on average,

7.319%.

6.2. Supply estimates: As we pointed out in the model section, the weight of aircraft

is an important determinant of the total landing fees that carriers must pay. Weight can

be seen as a proxy for the passenger capacity of the plane. Thus, it depends on air-travel

demand and also on the strategy of carriers. Table 12 reports estimates for the aircraft

weight equation (10). Note that we use spoke-route and period data rather than product

data. That explains why we only have 165 observations instead of 11,316. The regression

includes a constant, total number of passengers, daily frequency, distance, carriers and a

dummy variable indicating if aircraft land in peak or off-peak hours. We are interested in

the demand coefficient (τ1) and the coefficient of daily flight frequency (τ2). Both estimates

are directly related to the decision of carriers with respect to fares and flight frequency.

As expected, the τ1 estimate is positive and significant, which means that the higher the
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demand, the larger are the size of the planes. Regarding τ2, the higher the frequency of

flights, the lower are the size of aircraft. Consistent with previous literature (Borenstein and

Rosen (2008)), the longer the trip, the bigger are the planes. We do not observe significant

differences between the size of the planes operating during peak and off-peak hours.

Table 13 reports the average marginal cost per passenger-mile (second column) and

the mean Lerner index, defined as the ratio between the markups and fares (third column).

Looking at the second column, only small differences arise between airlines. The average

marginal cost per passenger-mile is equal to 6 cents, the same as reported in Berry and Jia

(2010). If we look at the third column, the average Lerner index equals 31%. Furthermore,

direct flight products have a higher margin than those using connecting flights. If we com-

pare our Lerner index estimates with those of Berry and Jia (2010), ours are much lower.

They report an average of 63% for all flights, a much higher value than the one we found.

Differences may be explained because Berry and Jia (2010) analyze the whole U.S. market

and we only focus on the markets that use SFO as an origin or final destination.

Table 14 reports estimates for the linear specification of marginal costs (13), which

includes a constant, carrier dummies, flight distance, square of flight distance, a dummy

indicating if the connecting or destination airports are a hub of the operating carrier, a

dummy for peak hours, and number of connections. These estimates are obtained in the

GMM step. The results are again consistent with Berry and Jia (2010). Marginal costs

increase non-linearly with distance. This finding makes sense if we think that an important

fraction of aircraft fuel is consumed at take-off. A similar argument can be used to explain

the positive estimate for the number of connections. The hub estimate is positive but not

significant. This result is unexpected since we may think that airlines use their hubs to

take advantage of economies of density. Hence, we predicted a negative sign rather than a

positive one (Brueckner and Spiller (1994)).

In order to estimate the monetary value of one minute delay (βd), we assume that the

undelayed cost component (FCostrc) linearly depends on distance, squared distance, and

carrier dummies. Table 15 shows the parameter estimates for equation (47). We tried several

specifications, and in all of them we obtained the unexpected result of βd being negative. On

the other hand, the distance and squared distance coefficients have the expected signs. That

is, operating flight costs are non-linear increasing functions with respect to distance. There

are not significant differences in undelayed flight costs between American Airlines (AA) and

other carriers except for United Airlines (UA) and US Airways (US).
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Table 16 summarizes the fitted values of the undelayed cost of operating a flight

( ˆFCostrc) (the RHS of equation (14) without the error term). This variable may be in-

terpreted as the fixed cost of operating a flight in a spoke-route. We did not include the

weight of the aircraft as an explanatory variable because its endogeneity (it depends on fares

and flight frequency) would increase the complexity of the model. The average fixed cost of

operating a new flight is around $10,550.

7. Implementing an operation charge in peak hours

This section analyzes the consequences of implementing a congestion charge for flights

arriving during peak hours (ρH > 0 and ρL = 0). Figures 2 to 12 show the effects on the

main variables of interest: daily frequency, fares, air-travel demand, size of aircraft, delays,

fees, and landing fee revenues. We simultaneously solve for flight frequency, ticket prices, and

demand as a result of changes in ρH. Fares and market shares are recomputed using their

respective elasticities with respect to frequencies, and the new equilibrium in frequencies is

obtained using (47).22 We repeat the process for different values of ρH and interpolate the

results to construct the figures.

While Figures 2 to 6 show the direct effect of implementing a congestion charge during

peak hours, Figures 7 to 10 display the consequences in off-peak hours.

Figure 2 shows changes in the number of daily flights offered at SFO during peak hours.

The x-axis represents the imposed congestion charge (ρH) in dollars. Displayed on the y-axis

is the change in the total number of daily flights arriving during peak hours. The variation

in flight frequency has the expected sign: the higher the congestion charge, the lower is the

number of flights during peak hours. For instance, a ρH = 2, 000 leads to a reduction in the

number of flights of 3.86% (from 217 daily flights during peak hours to 208). The result is

consistent with the idea that the higher the ρH, the more expensive is operating a flight.

Therefore, carriers have incentives to reduce the number of flights.

To gain an idea about the order of magnitude of these results, we compare them with

those presented by Ashley and Savage (2010) and Daniel (2001). The comparison is not

straightforward, since the application and methodology are different. Remember that these

papers use a bottleneck model where aircraft are charged according to the congestion exter-

nality imposed on other flights. In the case of Ashley and Savage (2010), they use data from

2004 to compute the congestion fees for flights arriving at Chicago O’Hare Airport. In one

of their simulations, they analyze the change in the optimal congestion fees as a result of an

exogenous reduction of 2% in the number of flights arriving during peak hours. They claim

22We use the Knitro package for Matlab to solve the system of non-linear simultaneous equations.
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that such a change would reduce the average congestion fee paid by aircraft from $8,100

to $5,800. Our results suggest that if the SFO operator decides that the number of flights

arriving at the airport during peak hours should be 2% lower, then it should levy a conges-

tion charge of around $1,000 (Figure 2). This amount is much lower than the one obtained

by Ashley and Savage (2010). While in their paper changes in frequencies are treated as

exogenous, we take them into account in the strategic behavior of carriers.

If we look at Daniel (2001), he uses data from 1990 to compute the optimal congestion

fees and the effects of their implementation at the airport of Minneapolis-St. Paul (MSP).

MSP in 1990 and SFO in 2006 are difficult to compare. In particular, MSP is not considered

as congested as SFO. For purposes of comparison, we look at the scenario where MSP is

heavily congested, the demand elasticity equals 2, and only considering large commercial

airlines (see Daniel (2001), Table 1(b), columns 2 and 6). In his simulation, implementing

an optimal congestion fee reduces the number of arriving flights by 5%, and the average

congestion fee during the day is $375 ($578 in 2006 dollars). This average charge is far lower

than the $2,500 that our model predicts would be needed for a similar reduction in flights

(Figure 2). However, while Daniel’s result corresponds to the average charge during the day,

our congestion charge is only levied in peak hours.

Due to the deterministic relationship between flight frequency and delays (equation

9), the average delay at SFO decreases with imposition of a congestion fee (Figure 3). If

ρH = 2, 000, the average delay during peak hours falls by 12.16% (from an average of 28

minutes and 45 seconds to 25 minutes and 15 seconds). The non-linear relationship between

flight frequency and delays explains the larger change in the level of congestion.

If we look at the estimates of equation (10), the size of aircraft is positively correlated

with demand and negatively correlated with flight frequency. As we will see later, peak

demand decreases with the congestion fee. However, since the decrease in the frequency

of flights is relatively larger than the decrease in demand during peak hours, the net effect

is an increase in the size of aircraft (Figure 4). A congestion charge of $2,000 increases

the average size of aircraft operating during peak hours by 9.10% (from 137,940 pounds to

150,492 pounds).

Increasing the congestion charge also leads to higher fares (Figure 5). The impact is very

small, but the curve is increasing. For example, ρH = 2, 000 leads to a modest fare growth of

0.30% (from $427.47 to $428.75). The increase is so small because the optimal fares (using

(23)) are not directly affected by ρ, but are only affected through changes in the frequency

of flights. Our results are in line with those presented by Brueckner (2010). His theoretical

model also shows that optimal fares indirectly depend on flight costs through frequencies.
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Implementing a congestion charge leads to an increase in the costs of operating a flight, but

it also increases the number of passengers per aircraft (size increase). Consequently, having

more passengers in the plane reduces the impact of the congestion charge on fares.

Note that the demand estimates (Table 9) show that travelers prefer higher frequency

of flights and lower fares. Since the congestion charge decreases frequency and increases

ticket prices, the average demand for products in peak hours decreases (Figure 6). If ρH

equals $2,000, then the average demand for peak hours products decreases by 4.14% (from

an average of 149.24 purchased tickets per product to 143.06).

Implementing a congestion charge (ρH) in peak periods also has an impact on off-peak

hours. The loss of demand in congested hours is partly diverted to off-peak hours (Figure 7

and Figure 8). While Figure 7 shows an increase in the average demand for flights offered

during low congested hours, Figure 8 displays a reduction in the average demand for products

offered at SFO independently of the scheduled arrival time. Some travelers may prefer to use

alternate airports or other modes of transportation rather than using SFO at less preferred

times. Such an increase in off-peak demand leads to a slight growth in the number of flights

(Figure 9), an increase in the size of aircraft (Figure 10), and an almost negligible increase

in fares.23

If we look at equation (15), the weight-based fee depends on the size and the number

of flights landing at SFO, and the revenues from travelers using the groundside and terminal

services. The reductions in total demand and the number of flights during peak hours push

up the weight-based fee, increasing the costs of operating a flight independently of the arrival

time (Figure 11).

To conclude this section, if we look at the revenues from the congestion charge (the

sum of the number of daily operations during peak hours times the congestion charge), they

are increasing with ρH (Figure 12). The amount is not negligible: a ρH of $2,000 leads to a

quarterly revenue of $38.39 million. This fact raises a question about what to do with those

revenues. According to the DoT, the total revenues from the two-part landing fee cannot

exceed the allowable costs of the airfield. If the total landing fee revenues systematically

violates this DoT requirement, the landing fee scheme should be modified to include, for

instance, a rebate program that preserves the incentive effects from the introduction of the

congestion charge. Alternative rebate programs are discussed by Daniel (2001). Among

them, the lump-sum rebates per aircraft, rebate per aircraft miles flown, and rebates from

23Fares changes in off-peak hours are not reported here but are available upon request.
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reduced fuel taxes also work in our framework. It is important to mention that those pro-

grams should be applied at national level (U.S.) rather than local (SFO). If not, the rebates

would attract additional aircraft at SFO, reducing the power of the congestion charge. The

lump-sum rebate per aircraft would distribute the revenues among all active aircraft oper-

ating in the U.S.. The problem with this program is that it would induce airlines to operate

some aircraft just for the rebate. A rebate based on the miles flown by aircraft would elimi-

nate this problem. However, this program would introduce some distortions in the aircraft

cost per mile. Finally, a rebate from reduced fuel taxes is a similar program, but applied per

gallon of fuel rather than per flown mile. We could also consider using the revenues from the

congestion charge to finance the Next Generation Air Transportation System (NextGen).

This is a program that has the objective of updating the U.S. traffic control system from

the current ground-based system to a more efficient satellite based system. This technology

would reduce traffic delays, increase the capacity of airports, and reduce fuel consumption

of aircraft. While the benefits of this technology are clear, its full implementation is being

delayed because of its high costs.

8. Conclusions

Using data from the San Francisco International Airport (SFO), our study is the first one

that measures the effects of implementing a two-part landing fee on congestion at airports.

This new pricing scheme consists of a fee that depends on the weight of aircraft and a

congestion charge levied in peak periods. The U.S. Department of Transportation claims

that this price mechanism would reduce the level of airport congestion by decreasing the

number of landings, but at the same time, the size of aircraft would increase in order to

fulfill travel demand. We do not have empirical confirmation of DoT’s expectations since no

airport has put into practice such a scheme. Instead, airports charge landing fees according

to the weight of aircraft without taking into account the level of congestion. Our simulation

not only is in line with DoT’s expectations, but it also measures the quantitative impact

of implementing this scheme in the particular case of SFO. As expected, the higher the

congestion charge, the lower are the number of flights arriving during peak hours and the

bigger are the size of aircraft. As a result, flight delay decreases. On the other hand, a

congestion charge also leads to a reduction in the total demand for products at SFO, and an

increase in the weight-based component of the landing fee.

We acknowledge some limitations of our study. Our application only considers round

trip tickets with U.S. domestic passengers landing at SFO. However, landing fees are also paid

by international and cargo flights. The lack of data prevents us from including those flights
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in our estimation procedure. Furthermore, we did not use information about passengers

connecting at SFO, but including those travelers in our model is challenging because their

preferences are very different from those with SFO as a final destination. Similarly, the

strategy of carriers with regard to connecting passengers should also consider the entire

route network rather than just the spoke-routes arriving at SFO. We believe that including

information about connecting and international flights could weaken our results. Airlines

may be reluctant to change the schedule of their flights to avoid increasing the layover time

of connecting passengers. The outcome would depend on how valuable the domestic travelers

with SFO as a final destination are compared to international or connecting passengers. The

lack of data also prevents us from including general aviation operations.24 Since those flights

usually use small aircraft, they are more sensitive to congestion fees than big commercial

airplanes. Hence, including information from general aviation will strengthen the impact

of implementing a congestion charge. In addition, we only include data from the third

quarter of 2006, while the methodology to compute landing fees and rental charges uses

yearly information. However, including data from the other quarters will only reinforce our

results. For example, the loss of demand as a consequence of the congestion charge ρH would

be greater if we used four quarters, raising still more the weight-based landing fee. Because

of that outcome, the reduction in the frequency of flights arriving at SFO during peak hours

would be greater than just considering the 3rd quarter of 2006.

Future research can study a more general-equilibrium type of model, where all U.S.

congested airports introduce a two-part landing fee. This type of project would let us assess

the impact of the new policy for the whole U.S. economy.

Finally, our model could also be used to investigate the impact of the third amendment

of the 1996 “Policy Regarding the Establishment of Airport Rates and Charges”. That is,

how a congestion charge diverts operations from a congested airport to an underutilized

airport owned and operated by the same proprietor. Good candidates could be Los Angeles

International and Ontario International airports. Both are owned by Los Angeles World

Airports and meet the requirements by the DoT for implementing a congestion fee.

24According to the International Civil Aviation Organization (ICAO), “general aviation is defined as all

civil aviation operations other than scheduled air services and non-scheduled air transport operations for

remuneration or hire. The general aviation activities are classified into instructional flying, business flying,

pleasure flying, aerial work and other flying.”
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Figure 1. Arrival Frequency and Delay
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- Dash-dotted line: average delay of arriving flights.
- Continuous line: distribution of arrivals during the day.
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Table 1. Summary Statistics for 3rd Quarter 2006

Off-Peak Peak Both
Mean Sd Mean Sd Mean Sd

Fare (p) ($100) 4.29 2.09 4.27 2.08 4.28 2.09
Nb Passengers 95.97 662.03 149.24 950.81 124.04 827.26
Direct Flight 0.02 0.15 0.03 0.16 0.02 0.15

Daily Flight Frequency (f̂) 1.74 0.72 1.98 0.70 1.86 0.72
Distance (1000 miles) 4.51 1.27 4.55 1.23 4.53 1.25
AA 0.17 0.37 0.17 0.37 0.17 0.37
CO 0.05 0.22 0.06 0.24 0.06 0.23
DL 0.17 0.37 0.16 0.36 0.16 0.37
NW 0.08 0.28 0.09 0.28 0.09 0.28
UA 0.38 0.48 0.37 0.48 0.37 0.48
US 0.13 0.34 0.12 0.33 0.13 0.33
Others 0.02 0.15 0.04 0.19 0.03 0.17
Slots 0.30 0.46 0.30 0.46 0.30 0.46

Delay (D̂) (minutes) 16.11 1.78 16.99 1.73 16.57 1.81
Nb Products 5,353 - 5,963 - 11,316 -

Table 2. Market Average Statistics for 3rd Quarter 2006

Off-Peak Peak Both
Mean Sd Mean Sd Mean Sd

Nb Products 12.25 19.11 13.65 21.73 25.89 40.77
Nb Carriers 3.34 2.10 3.83 2.20 3.31 2.11
Nb Markets 435 - 437 - 437 -

Table 3. Supply Statistics for 3rd Quarter 2006 (On Time Performance)

Off-Peak Peak Both
Mean Sd Mean Sd Mean Sd

Daily Frequency (f) 2.64 1.58 2.38 1.42 2.50 1.49
Aircraft MGLW (weight) (103 pounds) 124.86 79.66 137.94 81.81 132.07 80.87
Total Daily Capacity (103 pounds) 290.38 250.18 336.78 311.34 315.97 285.64
Nb Spokes 49 - 56 - 58 -

Table 4. Supply Statistics for 3rd Quarter 2006 in Off-Peak Hours (On Time
Performance)

Daily Freq MGLW Daily Capacity Spokes
(103 pounds) (103 pounds)

Mean Sd Mean Sd Mean Sd Nb Spokes
Off-Peak 2.64 1.58 124.86 79.66 290.38 250.18 49
AA 1.98 1.17 172.81 43.84 323.00 178.95 7
CO 1.43 0.61 146.30 0.60 210.09 90.82 2
DL 1.98 1.75 222.21 88.16 381.24 231.19 4
NW 2.19 1.41 180.44 25.48 369.10 173.05 4
UA 2.94 1.73 110.65 85.52 300.01 300.06 42
US 2.44 1.36 89.53 61.84 167.43 104.31 9
Others 2.70 1.25 112.34 40.25 283.13 155.83 6
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Table 5. Supply Statistics for 3rd Quarter 2006 in Peak Hours (On Time
Performance)

Daily Freq MGLW Daily Capacity Spokes
(103 pounds) (103 pounds)

Mean Sd Mean Sd Mean Sd Nb Spokes
Peak 2.38 1.42 137.94 81.81 336.78 311.34 56
AA 2.28 1.51 186.47 79.12 415.18 288.52 11
CO 2.42 1.59 120.32 37.38 324.53 257.70 4
DL 3.30 1.25 191.82 60.82 638.96 329.14 4
NW 1.89 1.01 144.45 48.62 297.50 205.81 6
UA 2.48 1.57 128.99 88.68 341.43 367.47 46
US 2.35 1.01 110.81 81.00 241.83 173.32 12
Others 1.96 1.32 140.31 70.69 229.22 121.96 8

Table 6. Financial Information for year 2006

SFO
Landing Fee ($ per 103 pounds of MGLW) 3.213
Enplaned Passengers in 2006 (103) 16,574
Operating Revenues (OR) ($103) 125,656
Groundside Revenues (GRev) ($103) 57,686
ψterminal ($ per passenger) 7.580
ψground ($ per passenger) 3.476
Total Weight in 2006 (TWeight) (106 pounds) 20,095
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Table 9. Demand Estimates

OLS IV RCM

Intercept -10.785** -10.536** -6.924**

(0.170) (0.226) (0.272)

Fare (αp) -0.078** -0.606** -1.236**
(0.006) (0.057) (0.079)

Distance (1000 miles) 0.864** 1.423** 1.692**
(0.050) (0.081) (0.098)

Distance Squared -0.125** -0.169** -0.191**
(0.006) (0.009) (0.011)

Frequency (αf ) 0.061** 0.340** 0.384**
(0.021) (0.028) (0.032)

Direct 4.305** 4.463** 4.413**

(0.091) (0.117) (0.108)

Peak Hours (αpeak) 0.490** 0.421** 0.430**
(0.026) (0.034) (0.038)

CO -0.173** 0.367** 0.418**
(0.062) (0.093) (0.101)

DL -0.070 -0.101 -0.255**
(0.046) (0.062) (0.074)

NW -0.248** -0.212** -0.259**

(0.055) (0.073) (0.078)

UA -0.342** 0.355** 0.374**

(0.037) (0.070) (0.081)

US -0.418** -0.238** -0.225**
(0.050) (0.064) (0.066)

Others 0.666** 0.738** 0.714**
(0.080) (0.103) (0.112)

Slots -0.315** -0.233** -0.279**

(0.032) (0.043) (0.048)

Delay (αd) -0.108** -0.126** -0.409**
(0.011) (0.014) (0.017)

Random Constant (σ0) - - -0.874**
(-) (-) (0.145)

Random Price (σp) - - -0.066**
(-) (-) (0.004)

Distance to Airports (λ) - - -0.283**
(-) (-) (0.081)

Random Price-Income (αy) - - 0.054**

(-) (-) (0.001)

Random Frequency (σf ) - - 0.122

(-) (-) (0.131)

Random Delay (σd) - - -0.155**
(-) (-) (0.001)

Sfo-Mateo - - 1.129**
(-) (-) (0.249)

Sta Clara - - -1.564**
(-) (-) (0.128)

Alameda-Costa - - 0.142

(-) (-) (0.418)

Sonoma-Marin - - -0.448

(-) (-) (0.329)

Nb Observations 11,316 11,316 11,316

J-Statistic - - 44.54

Sargan Statistic - 170.36 -

R2 0.3376 - -

Degrees of Freedom - 4 33

χ2 Critical Value (5%) - 9.49 47.40

χ2 Critical Value (1%) - 13.28 54.78

** Significant at the 5 percent level.
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Table 10. Price Elasticities Estimates

Off-Peak Peak Both
All Carriers -3.43 -3.44 -3.44

(1.03) (1.04) (1.04)
AA -3.38 -3.39 -3.38

(0.91) (0.93) (0.92)
CO -3.76 -3.77 -3.76

(1.03) (1.06) (1.04)
DL -3.07 -3.07 -3.07

(1.11) (1.12) (1.12)
NW -3.25 -3.24 -3.24

(0.81) (0.81) (0.81)
UA -3.66 -3.70 -3.68

(1.03) (1.06) (1.04)
US -3.35 -3.33 -3.34

(0.85) (0.86) (0.85)
Others -2.96 -3.04 -3.01

(0.92) (0.89) (0.90)

Table 11. Frequency Semi-Elasticities of Demand

Off-Peak Peak Both Airports
Mean 7.468 7.183 7.319
Median 7.206 6.985 7.088
Std 3.181 3.186 3.187
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Table 12. Weight Estimates (TSLS)

Weight (103 pounds) Estimate
Intercept (τ0) 95.185**

(17.826)
Daily Pax (τ1) 0.439**

(0.054)
Daily Frequency (τ2) -12.974**

(3.748)
Distance (τ3) (1000 miles) 17.295**

(2.899)
CO -79.079**

(23.640)
DL 21.191

(21.349)
NW -7.819

(19.750)
UA -5.914

(13.510)
US -13.880

(16.671)
Other -5.772

(18.223)

Ipeakl (τ5) -7.498
(8.059)

Nb Observations 165
Sargan Statistic 4.648
Degrees of Freedom 3
χ2 Critical Value (5%) 7.814

** Significant at the 5 percent level.

Table 13. Average Marginal Costs and Lerner Index

mc ($) per mile Lerner Index
All Flights 0.06 0.31
Off-Peak 0.06 0.31
Peak 0.06 0.31
Direct Flights 0.09 0.35
Connecting Flights 0.06 0.31
AA 0.06 0.31
CO 0.06 0.28
DL 0.05 0.34
NW 0.05 0.33
UA 0.08 0.29
US 0.06 0.31
Others 0.05 0.35
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Table 14. Marginal Cost Estimates

mc ($100) Estimate
Intercept 0.246

(0.237)
Peak -0.007

(0.060)
Distance (1000 miles) 0.818**

(0.116)
Distance2 -0.069**

(0.015)
Hub 0.142

(0.085)
Nb Connections 0.098**

(0.048)
CO 0.673**

(0.162)
DL -0.379**

(0.104)
NW -0.149

(0.146)
UA 0.679**

(0.102)
US -0.029

(0.113)
Others -0.235

(0.188)
Nb Observations 11,316

** Significant at the 5 percent level.
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Table 15. Total Cost Frequency Estimates

$100 Estimate
Intercept 74.78**

(9.21)
βd -3.25**

(0.21)
Distance (1000 miles) 7.88**

(3.05)
Distance2 -1.06

(0.73)
CO 15.22

(8.86)
DL 10.21

(7.97)
NW 6.21

(7.48)
UA 31.58**

(9.40)
US 22.02**

(6.12)
Others 9.47

(6.76)
Nb Observations 165
R2 0.909

** Significant at the 5 percent level.

Table 16. Undelayed Cost Frequency Estimates ( ˆFCost)

ˆFCost ($) Off-Peak Peak Both
Mean 10,606 10,547 10,573
Median 10,928 10,874 10,921
Std 1,136 1,156 1,145
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Figure 2. ∆ Total Daily Flights - Peak (%)
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Figure 3. ∆ Average Delay - Peak (%)
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Figure 4. ∆ Aircraft Average Weight - Peak (%)
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Figure 5. ∆ Average Fare - Peak (%)
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Figure 6. ∆ Average Demand - Peak (%)
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Figure 7. ∆ Average Demand - Off-Peak (%)
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Figure 8. ∆ Average Demand - SFO (%)
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Figure 9. ∆ Total Daily Flights - Off-Peak (%)
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Figure 10. ∆ Aircraft Average Weight - Off-Peak (%)
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Figure 11. Weight-Based Fees ($)
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Figure 12. Congestion Charge Revenues (million dollars)
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9. Appendix

9.1. Description of Data Sources:

9.1.1. Choice and Flight Characteristics Sources:

• Airline Origin and Destination Survey (DB1B): a 10 % sample of all passengers
traveling within the U.S., with detailed ticket information such as the operating and
ticketing carrier of each coupon, origin and destination airports, the airports in which
the passenger made a connection, if any, and the fare.
• Airline On-Time Performance Data: provides information about on-time, delay, and

daily frequency of flights for non-stop domestic flights by major air carriers.
• Schedule B-43 Aircraft Inventory: contains information about aircraft operating in

the U.S.. In particular, it details characteristics for each plane such as the owner,
model, tail number (civil registration number), and acquisition date.
• T-100 database: has information on frequency of flights, total number of passengers

and type of aircraft for all segments in the U.S..

9.1.2. Airport Financial Reports: We use financial details that airports report to the FAA
(summary report form 127) to obtain information about the airfields and terminals’ operating
revenues. Such information is useful when we introduce landing fees and terminal rental
charges in our model. The amounts and the methodology to determine the landing fee and
the rental charge are obtained from the 2006 Annual Operating Budget document for the
San Francisco International Airport.

9.1.3. American Community Survey (ACS):. The ACS is a household survey developed by
the Census Bureau to replace the long form of the decennial census program. The ACS
is a large demographic survey collected throughout the year using mailed questionnaires,
telephone interviews, and visits from Census Bureau field representatives to about 3 million
household addresses. Starting in 2005, the ACS produced social, housing, and economic
characteristics for demographic groups in areas with populations of 65,000 or more. It also
produced estimates for smaller geographic areas, including census tracts and block groups.
We use this database to construct the distribution of household income and distance to the
airport.

9.1.4. 2006 Airline Passenger Survey (2006 MTC):. This survey gives detailed information
about travelers using the San Francisco International Airport (SFO) and is provided by the
Metropolitan Transportation Commission of the San Francisco Bay. The survey contains:
household income, location of the traveler in the Bay Area, airport of origin/destination,
carrier, transportation access to the airport, and departure time. The survey does not
provide information about prices, nor the chosen itinerary. However, its rich demographic
information can complement the DB1B and ACS databases. We will use this survey to
construct the distributions of the household income and travelers distance to SFO conditional
on arriving during peak or off-peak hours.
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